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ABSTRACT is fixed size (with respect to the amount of anti-speaker

Computationally scalable speaker recognition systems aredata)' Second, the polynomial method is discriminative.

highly desirable in practice. To achieve this objective, we I_t directly approxin_]a_tes the pogteripri_probabilities and
use a two-stage architecture for text-prompted speakerreco%—ngS the globl._’:ll ”_“”'mug“- 'Il'hls_ ellmllgate”s thre] nee_d _for
nition. In this system, the input speech is first segmented on ohort horma Ization and se ect|_on. inaty, the trammg
subword boundaries using a Viterbi alignment. The sec- and recogn!tlon_ algorlthms are simple mulUpIy-add ‘T’\rCh"
ond stage applies a polynomial classifier to each subwordtea_llfrr]es Whl'_Ch f't]:Nf]” with mo_dern [f)sl'lp |mpIngntaFlonsz.
for verification. Through a simple approximation, the scor- 'he gut ine of t € paper LS SST?] ows. n ecrtllocr;_ ’
ing criterion for the polynomial classifier is made highly we intro uce our scoring met. 0d. The scoring m(.at. odis a
scalable. The resulting combination of speaker independenpovel comb|nat|on_ of connect|orj|st§peech recggnlfu_on scor
segmentation and a scalable recognition system results in y9 methods, a simple approximation, and simplification.

system which can perform speaker recognition on a Iarges‘_aCt'r?n s S_hO_WS hovx;)tobfclr_a}ln a po(ljyndofm lal cIa_ssMgr to_ob—4
population with minimal computation. tain the emission probabilities needed for scoring. Section

applies the method to the YOHO database. We show that
this method outperforms recent methods in the literature in

1. INTRODUCTION accuracy, parameter usage, and computation.

Speaker recognition (verification or identification) has many

modes of interface—text-prompted, text-independent, or text- 2. SCORING
dependent. In this paper, we work with the text-prompted ) B

case. In this situation, the claimant is asked to repeat a2-1- Polynomial Classifiers

prompted text. Utterance verification is then performed to \\e yse a polynomial classifier based upon a linear com-

verify the text has been correctly read. The system thenyination of monomials. The classifier outpifitx) can be
identifies or verifies the identity of the speaker using the expressed as

knowledge of the prompted text. In the case of (closed-set)

identification, the speaker is identified from a list of speak- f(x) = wip(x), (1)
ers. In the case of verification, the speaker is either accepted
or rejected as the claimed individual. wherep(x) is the vector of all monomials of degréé or

Popular methods for text-prompted recognition include less of the components &f Note that we use a bolg for
Gaussian Mixture Models (GMM’s), HMM’s, Neural Tree polynomials to distinguish from probability functions such
Networks, and vector quantization. HMM'’s are the clos- asp(z). As an example of a polynomial function, tet=
est approach to ours. HMM models are constructed from [wl g;Z]t andK = 2, then
knowledge of the subwords of enrollment data. Recognition
is performed by concatenating HMM models for subwords
of the prompted input [1, 2]. Typically, cohort normaliza-
tion[3, 4] is applied to approximate the ideal Bayes decision The vectorw is a vector of coefficients representing the

rule. classifier model. We train the classifier to approximate
We extend a novel approach presented in [5]. This ap- posterioriprobabilities.

proach uses a polynomial discriminant function. The ad-
vantage of this method is severalfold. First, the method is
able to handle large amounts of enrollment data with ease.
For speaker verification enrollment, the entire anti-speakerFor speaker recognition an input utterance is converted to
population is encapsulated into a single vector; this vectora sequence of feature vectoss, ..., x,, by extraction of

2

p(x)=[1 z1 z z} x129 mé]t @

2.2. Sequence Scoring



spectral characteristics. We assume that speakemod- The approximation (7) is especially good when the scaled

eled by a concatenation of hybrid HMM/polynomial classi- a posterioriis nearl. Sincex — 1 goes to—1 asx goes td)

fier modelsw;, corresponding to the prompted phrase. That andlog(z) goes to—oo, usingz — 1 is approximately equiv-

is, we use polynomials to model tieenission probabilities  alent to replacingog(x) by max(log(x), —1). The approx-

of the HMM. We use an optimum Bayes approach to recog- imationmax(log(z), —1) is equivalent to ensuring that the

nition. We first calculate(x, .. ., x,|w;). We abbreviate  probability is not allowed to go below a certain value. The

this asp(xf|w;). discriminant function with all of the above approximations
In order to calculate(x}|w;), we use several assump- is

tions. A standard approach is to express this value as a sum

over all possible state sequences for an HMM. We approx- d(x", j Z p wJ|X“ ¢i) (8)

imate this by using the most likely state sequenge, .., plwjlai)

g». We assume that this state sequence can be derived in- where we have dropped thel since a constant offset will

dependently Of. the speaker. That is, a Vt.6.rb' aI_|gnment be eliminated in a log likelihood ratio function. The approx-
using speaker independent speech recognition gives a se-

uence which has(x?, g7 |u;) close to the optimal speaker imation (8) is the basis for our scalable scoring technique.
9 1 q1 1w P P As a second simplification, we assume that the states in
dependent sequence value. Further by assuming mdepeqhe

discriminant function (8) are from a left-to-right HMM
dence and that the emission probability is dependent only .
model withl states. Then the state sequence can be com-
on the current state, we obtain

bined into similar groups. l.e., assume we have indices,
p(x1|wj) = p(xT, ¢1'|w;) ir, jr thatpartitionl, ..., nasi; =1 < j; <iy = j1+1<
= plx} g} w))p(a} |«y) j2 <o <= i+l <G =n, sothalg, = - = g,
n If we approximate eacp(w;|x;, ¢;) using a unigue polyno-
- (Hp(mlqﬁ%)) p(q7|w;) 3) mial classifier with modetv; ,, for every unique state and
every speaker, then we obtain the following simplification

< n g
We discard the second term on the right hand side of (3) in

our discriminant function, since the probability of the state Wherecjx = 1/p(wj|gi, ). We let

sequence in our application is negligible compared to the i
probability of the observations. Pr = Z p(xm), (10)
We now use the relation r—is
p(%ilqi, w;) = pw;|xi, ¢)p(xi, ¢i) (4) then (9) becomes
p(w;lgi)p(gi)
and (3) to obtain the discriminant function d(x2, §) Z ¢, kw] Dk (11)
H P w]|xz,Qz 5)
p(w;lg:) The equation (11) gives a computationally scalable system.

For example, if we segment the input utterance into six sec-
We have discarded the numerator tefff_; p(x;,¢;) and  tions, we can calculatp, for each of these sectiofisde-
the denominator termi[;", p(¢:), because they are inde- pendent of the speakeFhen scoring for each speaker is ac-
pendent ofw;; i.e., they will cancel out in the likelihood  complished by six inner products and a sum of six scores—a

ratio function. S _ ~ low-complexity operation.
We now perform two simplifications. First, we consider For optimal Bayes identification with equal class priors,
the logarithm of the discriminant function, we choosg* so thatj* = argmax; d(x}, j). For optimal
Bayes verification, we compare the log likelihood ratio to a
’ w]|xz, Qz) L A .
log(d' (xV, j Zlog pwila) . (6) threshold. For our discriminant function, this corresponds
7141

to a threshold oni(x?,0) — d(x{,1). Sincew] ;px =
Using Taylor series, a linear approximation@f(z) around 1 — w, ;b by virtue of the training method, see [5, 6], the
x = lisz — 1. Thus, we can approximaleg(d' (x?,j))as  decision rule is based on a threshold for

n l l
log(d' (x}', /) ~ Y (w - 1) ) 3 (cok + i) Wh xBr — Y cr. (12)

=\ plwjla) k=1 k=1



That is, we can calculate a weighted surmc{{kpk asin The criterion for training then becomes
(11) and compare this to a threshold (i.e., we do not have to

explicitly calculate a cohort score). p(wo) No
. . . : t N 12

As a final point, we note that our scoring method ex-  argmin No E |w'p(x0,;) "+
tends to any linear approximation space. The key property j=l1
that allows simplification of the scoring is that the quantity (@) Ny

i ! . w

fﬁ:ik whp(xm) canbewrittenas/’ , (37", p(xm)). _ le E lwip(xi;)|*| (17)
This property is dependent only on the fact that we are using L]

a linear basis, i.e., in our case, the components(&f,, ). , .
P ts(ah) wherex; ; is thejth training sample from class;, andN;

is the number of training samples in clags Training with
equal priors typically produces better results than scaling
the model by training set priors [7].

The extension to the multistate case is straightforward.
We illustrate with an example. Suppose we have two utter-
ances “23-45" and “45-23" prompted during training for a
speaker and an anti-speaker population. We first segment
all utterances into the vectors corresponding to the word
We do this by training a polynomial classifier using a mean- «23» ang the vectors corresponding to the word “45” (us-
squared error criterion. For simplicity, we consider the two- ing words as our fundamental states). We then train a poly-
class problem (verification) for the remainder of this sec- nomjal modelw.s, to distinguish between the speaker and
tion. We assume that the speakewisand the impostor set  anti-speaker set only on the vectors corresponding to word
IS wi. “23" using the two class training criterion (17). We train a

We first consider the case when a one-state HMM/poly- gjmilar model,ws, for “45” These models approximate
nomial is used. For this case, the quantity (13) simplifies p(wolx, g = 23) andp(wolx,q = 45), respectively, where
to g = 23 means the state in the HMM corresponding to the

p(w;jlx;) (14) word ‘_‘23” (and similarly forq_ = 45). We can then use the
p(wj) resulting models in the scoring equation (8).

Sincep(w: |z) = 1—p(wo|x), we consider only approximat-
ing p(wo|x). We can obtain a polynomial approximation of

this quantity by solving the following optimization problem \ye applied our method to the YOHO database. The YOHO
. : 2 database [8] is a largd {8 speaker) multisession database
argvf,mnE { (W'p(x) —y(w)) } : (15 gesigned for testing speaker recognition systems. Enroll-
ment and verification consists of combination lock phrases;
e.g., “26-81-57." Enrollment consists dfsessions of4
phrases. Recognition consists Idf sessions oft phrases
per session per speaker. We perform recognition both on
the 40 phrases (d-phrase test) and on the combination of

3. TRAINING

To use the scoring method (8), we must find a polynomial
function which approximates the quantity

p(wjlas, x;)

Pwsl0) 13)

4. RESULTS

Herey(w) is the ideal discrimination output; i.e.(wo) = 1
andy(w;) = 0. A method which solves this optimization
problem in a novel way is given in [5]. The result of (15)
is @ model such that the polynomigl(x) = w’p(x), ap-
proximateg(wo|x). To obtain (14), we divide out the prior,  tnay phrases in each sessiond@hrase test).
p(wo), obtained from théraining data set. This operation For Viterbi segmentation, we designed models based on
corresponds to scaling the model vecter,by 1/p(wo). 12 MFCC’s and12 A-MFCC’s. We segmented utterances
An alternative approach to dividing out the pripfwo), based on subwords for each of the decalgs$o, . .., 90,
is to incorporate the desired prior into the training process. 5nq the digits, . .., 9. The choice of these subwords, rather
If we setp(wo) = p(w1) = 1/2, then we can ignore the o the more common monophones, was motivated by two
prior in (8); that is, the prior will cancel out of the likelihood  5.tors. First, there arg0 monophone models needed to
ratio. For this style of training, we can write the expectation ,o4el the words in YOHO. Our selection reduces the num-

in (15) as ber of models td 6. Note that we cannot use models for in-
5 dividual numbers, e.3, because some numbers in recog-
E { (WtP(X) - y(w)) } = nition are not represented in enrollment. Second, segment-
‘ 2 ing with decades and digits gives fewer states per utterance.
p(wo) B { (W'p(x) —=1) |w = “’0} + For the1-phrase test, there are orfiystates. With fewer

‘ 2, states, the number of frames per segment increases. This
plw)E { (W p(x)) o = wl} - (186) property increases the scalability of the system.



Table 1: Verification performance on the YOHO database.

MFCC | A | AA | order| Avg. EER | Avg. EER
1-phrase% | 4-phrasel
12 - - 3 0.35 0.02
12 12 - 2 0.29 0.08
12 12 - 3 0.07 0.01
12 12| 12 2 0.24 0.09

Table 2: Identification performance on the YOHO database.

where Ngiates 1S the number of unique states in the model.

Asymptotically as the number of speakers increases, our

computation savings is abolts Niames/Nstates- OUr im-
plementation computation speeduRi)/6 = 40 for a 1-
phrase test (approximatelyd seconds of speech per test).

5. CONCLUSIONS

We derived a novel scoring method for a HMM with polyno-
mial emission probabilities that produces a computationally

scalable speaker recognition system. Results showed high

accuracy and significant computation reduction.

MFCC | A | AA | order Error Error
1-phrasé€l | 4-phrase€l

12 - - 3 0.74 0.14

12 12 - 2 0.51 0.07

12 12 - 3 0.14 0.07

12 12| 12 2 0.38 0.07

We trained a system to approximate theposteriori
probabilities p(w;|x;, ¢;), with a polynomial classifier. We

preprocessed the data using preemphasis and a Hamming

window. We extracted2 MFCC's, 12 A-MFCC's, and
12 AA-MFCC's for every30 ms frame with an overlap of
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