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ABSTRACT

Computationally scalable speaker recognition systems are
highly desirable in practice. To achieve this objective, we
use a two-stage architecture for text-prompted speaker recog-
nition. In this system, the input speech is first segmented on
subword boundaries using a Viterbi alignment. The sec-
ond stage applies a polynomial classifier to each subword
for verification. Through a simple approximation, the scor-
ing criterion for the polynomial classifier is made highly
scalable. The resulting combination of speaker independent
segmentation and a scalable recognition system results in a
system which can perform speaker recognition on a large
population with minimal computation.

1. INTRODUCTION

Speaker recognition (verification or identification) has many
modes of interface–text-prompted, text-independent, or text-
dependent. In this paper, we work with the text-prompted
case. In this situation, the claimant is asked to repeat a
prompted text. Utterance verification is then performed to
verify the text has been correctly read. The system then
identifies or verifies the identity of the speaker using the
knowledge of the prompted text. In the case of (closed-set)
identification, the speaker is identified from a list of speak-
ers. In the case of verification, the speaker is either accepted
or rejected as the claimed individual.

Popular methods for text-prompted recognition include
Gaussian Mixture Models (GMM’s), HMM’s, Neural Tree
Networks, and vector quantization. HMM’s are the clos-
est approach to ours. HMM models are constructed from
knowledge of the subwords of enrollment data. Recognition
is performed by concatenating HMM models for subwords
of the prompted input [1, 2]. Typically, cohort normaliza-
tion [3, 4] is applied to approximate the ideal Bayes decision
rule.

We extend a novel approach presented in [5]. This ap-
proach uses a polynomial discriminant function. The ad-
vantage of this method is severalfold. First, the method is
able to handle large amounts of enrollment data with ease.
For speaker verification enrollment, the entire anti-speaker
population is encapsulated into a single vector; this vector

is fixed size (with respect to the amount of anti-speaker
data). Second, the polynomial method is discriminative.
It directly approximates thea posterioriprobabilities and
finds the global minimum. This eliminates the need for
cohort normalization and selection. Finally, the training
and recognition algorithms are simple multiply-add archi-
tectures which fit well with modern DSP implementations.

The outline of the paper is as follows. In Section 2,
we introduce our scoring method. The scoring method is a
novel combination of connectionist speech recognition scor-
ing methods, a simple approximation, and simplification.
Section 3 shows how to train a polynomial classifier to ob-
tain the emission probabilities needed for scoring. Section 4
applies the method to the YOHO database. We show that
this method outperforms recent methods in the literature in
accuracy, parameter usage, and computation.

2. SCORING

2.1. Polynomial Classifiers

We use a polynomial classifier based upon a linear com-
bination of monomials. The classifier output,f(x) can be
expressed as

f(x) = w
t
p(x); (1)

wherep(x) is the vector of all monomials of degreeK or
less of the components ofx. Note that we use a boldp for
polynomials to distinguish from probability functions such
asp(x). As an example of a polynomial function, letx =�
x1 x2

�t
andK = 2, then

p(x) =
�
1 x1 x2 x21 x1x2 x22

�t
: (2)

The vectorw is a vector of coefficients representing the
classifier model. We train the classifier to approximatea
posterioriprobabilities.

2.2. Sequence Scoring

For speaker recognition an input utterance is converted to
a sequence of feature vectors,x1, : : : , xn by extraction of



spectral characteristics. We assume that speakerj is mod-
eled by a concatenation of hybrid HMM/polynomial classi-
fier models,!j , corresponding to the prompted phrase. That
is, we use polynomials to model theemission probabilities
of the HMM. We use an optimum Bayes approach to recog-
nition. We first calculatep(x1; : : : ;xnj!j). We abbreviate
this asp(xn1 j!j).

In order to calculatep(xn1 j!j), we use several assump-
tions. A standard approach is to express this value as a sum
over all possible state sequences for an HMM. We approx-
imate this by using the most likely state sequence,q1, : : : ,
qn. We assume that this state sequence can be derived in-
dependently of the speaker. That is, a Viterbi alignment
using speaker independent speech recognition gives a se-
quence which hasp(xn1 ; q

n
1 j!j) close to the optimal speaker

dependent sequence value. Further by assuming indepen-
dence and that the emission probability is dependent only
on the current state, we obtain

p(xn1 j!j) � p(xn1 ; q
n
1 j!j)

= p(xn1 jq
n
1 ; !j)p(q

n
1 j!j)

=

 
nY
i=1

p(xijq
n
1 ; !j)

!
p(qn1 j!j)

=

 
nY
i=1

p(xijqi; !j)

!
p(qn1 j!j)

(3)

We discard the second term on the right hand side of (3) in
our discriminant function, since the probability of the state
sequence in our application is negligible compared to the
probability of the observations.

We now use the relation

p(xijqi; !j) =
p(!j jxi; qi)p(xi; qi)

p(!j jqi)p(qi)
(4)

and (3) to obtain the discriminant function

d0(xn1 ; j) =

nY
i=1

p(!j jxi; qi)

p(!j jqi)
: (5)

We have discarded the numerator term
Qn

i=1 p(xi; qi) and
the denominator term

Qn

i=1 p(qi), because they are inde-
pendent of!j ; i.e., they will cancel out in the likelihood
ratio function.

We now perform two simplifications. First, we consider
the logarithm of the discriminant function,

log(d0(xn1 ; j)) =

nX
i=1

log

�
p(!j jxi; qi)

p(!j jqi)

�
: (6)

Using Taylor series, a linear approximation oflog(x) around
x = 1 isx� 1. Thus, we can approximatelog(d0(xn1 ; j)) as

log(d0(xn1 ; j)) �

nX
i=1

�
p(!j jxi; qi)

p(!j jqi)
� 1

�
: (7)

The approximation (7) is especially good when the scaled
a posterioriis near1. Sincex� 1 goes to�1 asx goes to0
andlog(x) goes to�1, usingx�1 is approximately equiv-
alent to replacinglog(x) bymax(log(x);�1). The approx-
imationmax(log(x);�1) is equivalent to ensuring that the
probability is not allowed to go below a certain value. The
discriminant function with all of the above approximations
is

d(xn1 ; j) =

nX
i=1

p(!j jxi; qi)

p(!j jqi)
(8)

where we have dropped the�1 since a constant offset will
be eliminated in a log likelihood ratio function. The approx-
imation (8) is the basis for our scalable scoring technique.

As a second simplification, we assume that the states in
the discriminant function (8) are from a left-to-right HMM
model with l states. Then the state sequence can be com-
bined into similar groups. I.e., assume we have indices,
ik; jk that partition1; : : : ; n asi1 = 1 < j1 < i2 = j1+1 <
j2 < � � � < il = jl�1+1 < jl = n, so thatqik = � � � = qjk .
If we approximate eachp(!j jxi; qi) using a unique polyno-
mial classifier with modelwj;qi for every unique state and
every speaker, then we obtain the following simplification

d(xn1 ; j) =

lX
k=1

cj;kw
t
j;k

"
jkX

m=ik

p(xm)

#
(9)

wherecj;k = 1=p(!j jqik ). We let

�pk =

jkX
m=ik

p(xm); (10)

then (9) becomes

d(xn1 ; j) =

lX
k=1

cj;kw
t
j;k�pk: (11)

The equation (11) gives a computationally scalable system.
For example, if we segment the input utterance into six sec-
tions, we can calculate�pk for each of these sectionsinde-
pendent of the speaker. Then scoring for each speaker is ac-
complished by six inner products and a sum of six scores–a
low-complexity operation.

For optimal Bayes identification with equal class priors,
we choosej� so thatj� = argmaxj d(x

n
1 ; j). For optimal

Bayes verification, we compare the log likelihood ratio to a
threshold. For our discriminant function, this corresponds
to a threshold ond(xn1 ; 0) � d(xn1 ; 1). Sincewt

1;k�pk =

1�wt
0;k�pk by virtue of the training method, see [5, 6], the

decision rule is based on a threshold for

lX
k=1

(c0;k + c1;k)w
t
0;k�pk �

lX
k=1

c1;k: (12)



That is, we can calculate a weighted sum ofw
t
0;k�pk as in

(11) and compare this to a threshold (i.e., we do not have to
explicitly calculate a cohort score).

As a final point, we note that our scoring method ex-
tends to any linear approximation space. The key property
that allows simplification of the scoring is that the quantityPjk

m=ik
w

t
j;kp(xm) can be written aswt

j;k(
Pjk

m=ik
p(xm)).

This property is dependent only on the fact that we are using
a linear basis, i.e., in our case, the components ofp(xm).

3. TRAINING

To use the scoring method (8), we must find a polynomial
function which approximates the quantity

p(!j jqi;xi)

p(!j jqi)
: (13)

We do this by training a polynomial classifier using a mean-
squared error criterion. For simplicity, we consider the two-
class problem (verification) for the remainder of this sec-
tion. We assume that the speaker is!0 and the impostor set
is !1.

We first consider the case when a one-state HMM/poly-
nomial is used. For this case, the quantity (13) simplifies
to

p(!j jxi)

p(!j)
: (14)

Sincep(!1jx) = 1�p(!0jx), we consider only approximat-
ing p(!0jx). We can obtain a polynomial approximation of
this quantity by solving the following optimization problem

argmin
w

E
n�
w

t
p(x)� y(!)

�2o
: (15)

Herey(!) is the ideal discrimination output; i.e.,y(!0) = 1
andy(!1) = 0. A method which solves this optimization
problem in a novel way is given in [5]. The result of (15)
is a model such that the polynomial,f(x) = w

tp(x), ap-
proximatesp(!0jx). To obtain (14), we divide out the prior,
p(!0), obtained from thetraining data set. This operation
corresponds to scaling the model vector,w, by 1=p(!0).

An alternative approach to dividing out the prior,p(!0),
is to incorporate the desired prior into the training process.
If we setp(!0) = p(!1) = 1=2, then we can ignore the
prior in (8); that is, the prior will cancel out of the likelihood
ratio. For this style of training, we can write the expectation
in (15) as

E
n�
w

t
p(x)� y(!)

�2o
=

p(!0)E
n�
w

t
p(x) � 1

�2
j! = !0

o
+

p(!1)E
n�
w

t
p(x)

�2
j! = !1

o
: (16)

The criterion for training then becomes

argmin
w

2
4p(!0)

N0

N0X
j=1

jw
t
p(x0;j)� 1j2+

p(!1)

N1

N1X
j=1

jw
t
p(x1;j)j

2

3
5 (17)

wherexi;j is thejth training sample from class!i, andNi

is the number of training samples in class!i. Training with
equal priors typically produces better results than scaling
the model by training set priors [7].

The extension to the multistate case is straightforward.
We illustrate with an example. Suppose we have two utter-
ances “23-45” and “45-23” prompted during training for a
speaker and an anti-speaker population. We first segment
all utterances into the vectors corresponding to the word
“23” and the vectors corresponding to the word “45” (us-
ing words as our fundamental states). We then train a poly-
nomial model,w23, to distinguish between the speaker and
anti-speaker set only on the vectors corresponding to word
“23” using the two class training criterion (17). We train a
similar model,w45, for “45.” These models approximate
p(!0jx; q = 23) andp(!0jx; q = 45), respectively, where
q = 23 means the state in the HMM corresponding to the
word “23” (and similarly forq = 45). We can then use the
resulting models in the scoring equation (8).

4. RESULTS

We applied our method to the YOHO database. The YOHO
database [8] is a large (138 speaker) multisession database
designed for testing speaker recognition systems. Enroll-
ment and verification consists of combination lock phrases;
e.g., “26-81-57.” Enrollment consists of4 sessions of24
phrases. Recognition consists of10 sessions of4 phrases
per session per speaker. We perform recognition both on
the40 phrases (a1-phrase test) and on the combination of
the4 phrases in each session (a4-phrase test).

For Viterbi segmentation, we designed models based on
12 MFCC’s and12 �-MFCC’s. We segmented utterances
based on subwords for each of the decades20; 30; : : : ; 90,
and the digits1; : : : ; 9. The choice of these subwords, rather
than the more common monophones, was motivated by two
factors. First, there are20 monophone models needed to
model the words in YOHO. Our selection reduces the num-
ber of models to16. Note that we cannot use models for in-
dividual numbers, e.g.23, because some numbers in recog-
nition are not represented in enrollment. Second, segment-
ing with decades and digits gives fewer states per utterance.
For the1-phrase test, there are only6 states. With fewer
states, the number of frames per segment increases. This
property increases the scalability of the system.



Table 1: Verification performance on the YOHO database.

MFCC � �� order Avg. EER Avg. EER
1-phrase% 4-phrase%

12 - - 3 0.35 0.02
12 12 - 2 0.29 0.08
12 12 - 3 0.07 0.01
12 12 12 2 0.24 0.09

Table 2: Identification performance on the YOHO database.

MFCC � �� order Error Error
1-phrase% 4-phrase%

12 - - 3 0.74 0.14
12 12 - 2 0.51 0.07
12 12 - 3 0.14 0.07
12 12 12 2 0.38 0.07

We trained a system to approximate thea posteriori
probabilities,p(!j jxi; qi), with a polynomial classifier. We
preprocessed the data using preemphasis and a Hamming
window. We extracted12 MFCC’s, 12 �-MFCC’s, and
12 ��-MFCC’s for every30 ms frame with an overlap of
20 ms. The results of verification are shown in Table 1. The
results for identification are shown in Table 2.

Our results compare very favorably with those in the lit-
erature. Our best1-phrase average EER is0:07% and our
best1-phrase identification error rate is0:14%. For com-
parison, in the literature,1-phrase average EER rates of
0:62% [2] and 1:07% [9] have been reported. Identifica-
tion error rates of0:56% [2] and1:74% [9] have also been
produced. We note that the comparison is not entirely equiv-
alent, since different methods are used in each cited refer-
ence.

If we compare the parameter-usage performance of our
system, then the systems reported in Table 2 use7280, 5200,
46800, and11248 parameters, respectively. We estimate the
parameter usage of [2] (for example) for the3-mixture case
with 20 monophone models to be about14220 parameters.
Thus, if we consider the second system in Table 2, we have
a lower error rate and use63% less parameters.

For a computationally scalable identification system, we
want the computation growth with the number of speakers,
cNspk, to have as small ofc as possible. If we scored each
speaker’s utterance directly using a polynomial model, then
the computation required is approximately

Nframes (3Ncoe� + 1)Nspk (18)

whereNcoe� is the number of coefficients in the model and
Nframes is the number of frames in the utterance. Using our
new approach, the computation is approximately

2Ncoe�Nframes + (2Ncoe� + 1)NstatesNspk (19)

whereNstates is the number of unique states in the model.
Asymptotically as the number of speakers increases, our
computation savings is about1:5Nframes=Nstates. Our im-
plementation computation speedup is240=6 = 40 for a 1-
phrase test (approximately2:4 seconds of speech per test).

5. CONCLUSIONS

We derived a novel scoring method for a HMM with polyno-
mial emission probabilities that produces a computationally
scalable speaker recognition system. Results showed high
accuracy and significant computation reduction.

6. REFERENCES

[1] T. Matsui and S. Furui, “Concatenated phoneme models
for text-variable speaker recognition,” inInternational
Conference on Acoustics Speech and Signal Processing,
vol. II, pp. 391–394, 1993.

[2] C. Che and Q. Lin, “Speaker recognition using HMM
with experiments on the YOHO database,” inProc. Eu-
rospeech, pp. 625–628, 1995.

[3] A. Higgins, L. Bahler, and J. Porter, “Speaker verifica-
tion using randomized phrase prompting,”Digital Sig-
nal Processing, vol. 1, pp. 89–106, 1991.

[4] A. E. Rosenberg, J. DeLong, C.-H. Lee, B.-H. Juang,
and F. K. Soong, “The use of cohort normalized scores
for speaker verification,” inProceedings of the Inter-
national Conference on Spoken Language Processing,
pp. 599–602, 1992.

[5] W. M. Campbell and K. T. Assaleh, “Polynomial classi-
fier techniques for speaker verification,” inProceedings
of the International Conference on Acoustics, Speech,
and Signal Processing, pp. 321–324, 1999.

[6] J. Schürmann,Pattern Classification. John Wiley and
Sons, Inc., 1996.

[7] K. T. Assaleh and W. M. Campbell, “Speaker identifi-
cation using a polynomial-based classifier,” inInterna-
tional Symposium on Signal Processing and its Appli-
cations, pp. 115–118, 1999.

[8] J. P. Campbell, Jr., “Testing with the YOHO CD-ROM
voice verification corpus,” inProceedings of the Inter-
nation Conference on Acoustics, Speech, and Signal
Processing, pp. 341–344, 1995.

[9] J. Colombi, D. Ruck, S. Rogers, M. Oxley, and T. An-
derson, “Cohort selection and word grammar effects
for speaker recognition,” inInternational Conference
on Acoustics Speech and Signal Processing, pp. 85–88,
1996.


