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ABSTRACT 
We introduce a novel approach suitable for blind separation 
of convolutive Multiple-Input-Multiple-Output mixtures of 
orthogonal pulse sources. The approach is based on a joint-
diagonalization of the algebraic combinations of whitened 
correlation matrices at non-zero lags. It supposes constant 
and finite system impulse responses and more measurements 
than sources. Preliminary tests on the synthetic signals prove 
100% accuracy in detection of source pulses even if the 
sources are not completely orthogonal and when the 
measurements are noisy.  

1. INTRODUCTION 

Blind source separation (BSS) is a computational 
technique for identifying mutually independent sources out 
of their instantaneous or convolutive mixtures provided no 
further information is given either on the mixing process or 
on the nature of the sources. Many BSS approaches to 
separation of instantaneous mixtures were developed in the 
past. They usually exploit at least one of the following three 
properties: the non-Gaussianty of the independent and 
identically distributed (i.i.d.) sources, temporal correlations 
of the sources, and possible non-stationarity of the sources.    

The separation of convolutive mixtures proved to be 
much more difficult problem and was less frequently 
addressed. The developed approaches are typically based on 
the Bussgang methods [2], higher-order statistics [8], 
second-order statistics [6], and on linear independent 
component analysis [7]. Very efficient method for separation 
of general non-stationary sources was proposed in [1]. The 
approach exploits the differences of energy locations of 
sources in time-frequency domain and enables a robust 
reconstruction of sources, but only up to a filtering effect. 
The approach was upgraded in [6] where general sources 
were substituted with the mutually independent pulse 
sources which are commonplace in communications and 
biomedical signal processing.   
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The approach in this paper follows the work in [6] by 
operating upon the convolutive mixtures of close-to-
orthogonal pulse sources with finite unit sample responses. 
Both approaches even share the first whitening step, but 
herein much more robust and, hence, preferable 
identification of the missing unitary mixing matrix is 
presented. Section 2 outlines the assumed data model while 
Section 3 introduces the blind deconvolution method. 
Simulation results are outlined in Section 4. Section 5 
concludes the paper.  

2. DATA MODEL 

Assume the following linear and time invariant Multiple-
Input-Multiple-Output (MIMO) convolutive mixture of 
pulse sources: 

       )()()()(
1

1

0
tnltslhtx i

n

j

L

l
jiji +−= ∑ ∑

=

−

=
;    i=1,...,M,     (1) 

where, T
M txtxt )](),....,([)( 1=x  stands for the transposed 

vector of M measurements (channels), 
T

N tstst )](),....,([)( 1=s  denotes the vector of N 

trains of pulses (sources), and T
M tntnt )](),....,([)( 1=n  is 

the noise vector. )(lhij  stands for the unit sample response 
of the i-th source as detected by the j-th channel. For the 
simplicity reasons we will (without any loss of generality) 
suppose the length of all impulse responses equal to L. We 
further suppose the number of measurements greater than 
the number of sources M>N.  

The additive noise )(tni  is modelled as stationary, 
temporally and spatially white zero-mean Gaussian random 
process, being independent from the sources  

Inn )()]()([ 2* τδστ =+ ttE ,                     (2) 

where E[:] stands for mathematical expectation, (.)δ  for 
the Dirac impulse (delta function), 2σ  for the noise 
variance, and I denotes the identity matrix.  

Our goal in blind decomposition is to reconstruct the 
source pulse trains T

N tstst )](),....,([)( 1=s  given only the 

vector of measurements T
M txtxt )](),....,([)( 1=x .  
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To extend relation-ship (1) to convolutive MIMO vector 
form, the vector )(tx  has to be augmented by K delayed 
repetitions of each measurement: 

T
MM KtxtxKtxtxt )]1(),....,(),....,1(),....,([)( 11 +−+−=x ,

                          (3) 
where K is an arbitrary large integer which satisfies  

)( KLNKM +>                            (4) 

Extending the noise vector in the same manner, (1) can be 
rewritten in a vector form [1]: 

)()()( ttt nsAx += .        (5) 

A in (5) stands for the so called mixing matrix of size 
)( KLNKM +×  which contains the unit sample responses 
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while the extended vector of sources )(ts  takes the 
following form:   

T
NN KLtstsKLtstst )]1(),....,(),....,1(),....,([)( 11 +−−+−−=s .               

                (8) 

Following the above assumptions the correlation matrix of 
extended measurements can be expressed as: 

IAARxxR sx
2*

1
)()()()(1lim)( στδτττ +=+∑=

=∞→

TT

tT
tt

T
,   (9) 

where )(τsR denotes the correlation matrix of sources and 

)(* tx  stands for the conjugate transpose of )(tx . Without 
any loss of generality we can suppose the variance of all 

sources equal to 1 ( 1)()(1lim *
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correlation matrix of the extended sources at zero lag 0=τ  
can be set equal to the identity matrix: 

IRs =)0( .        (10) 

3. DECOMPOSITION METHOD 

Following the commonly used blind source separation 
route the novel approach utilises a two-step procedure. 
Firstly, the mixing matrix Â is estimated. Secondly, using 
the matrix Â  the original sources are reconstructed as  

)()( # tt xAs = ,         (11) 

where #A denotes a pseudo-inverse of the matrix A.   

3.1 Estimation of the mixing matrix 

As a first step in estimating the mixing matrix the 
measurements are whitened (second-order decorrelated) by 
so called whitening matrix W satisfying 

IWWAA =HH .               (12) 
There are several ways of constructing the whitening matrix 
W [7]. Due to the clarity reasons only the most obvious is 
quickly presented in the sequel. According to (4) there are at 
least )( KLNKM +−  eigenvalues of ( )0xR  equal to 2σ . 

Consequently, the noise variance 2σ  can be estimated by 
averaging the )( KLNKM +−  smallest eigenvalues of 

( )0xR . Subtracting it from the correlation matrix of 
measurements we obtain: 

 TT AAAARIRR sxx ==−= )0(ˆ)0()0( 2σ .   (13) 

The whitening matrix W can thus be obtained as an inverse 
square root of the observation correlation matrix ( )0xR  [3].  

According to (12) the whitening matrix W transforms the 
mixing matrix A to yet unknown )()( KLNKLN +×+  
unitary matrix U: 

UWA = .         (14) 
Hence, in the second step the matrix U must be identified. 
One of the possible ways was already introduced in [6] by 
joint-diagonalizing [4] so called spatial pseudo Wigner-Ville 
(PWV) distribution matrices of the whitened observations 

)(txW . Much more robust way towards identification of 
unknown matrix U is to fully exploit the cross-correlations of 
the augmented sources. Namely, dealing with temporally 
independent pulse sources the source correlation matrices 
take the following form:    
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where 0  denotes the )()( KLKL +×+  matrix with all 
entries equal to zero, and )(τiJ  stands for the 

)()( KLKL +×+  matrix with the non-zero entries only on 
the τ -th diagonal: 
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It can easily be verified that 
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with )()( KLKL +×+  )(τiD matrices defined as 
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According to (18) )(τsC  matrices are diagonal for 
11 −+≤≤+−− LkLK τ . Some algebra upon (9), (14) and 

(17) produces: 
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The matrices ),( ττ−xQ effectively suppress the noise. 
and are all diagonal in the basis of the columns of the matrix 
U. Hence, the missing matrix U can be obtained as a unitary 
diagonalizing matrix of the ),( ττ−xQ matrices. However, to 
guarantee the uniqueness of the unitary matrix which 
simultaneously diagonalizes the set of ),( ττ−xQ matrices 
the following uniqueness condition must be fulfilled [3]: 
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where )(τid  stands for the i-th diagonal element of the 
matrix )(τsC . When diagonalizing the set of ),( ττ−xQ  
matrices ( 11 −+≤≤+−− LkLK τ ) the uniqueness 
condition (20) is met only if jjii rr ≠  for ji ≠ . But, according 

to (10), all the sources have unit variance 1  , ii =∀ ri .   
This problem can easily be avoided when separating non-

stationary pulse sources with different time-varying firing 
frequencies. Limiting the calculation of the )(τxR matrices in 
(19) to a short enough time interval [ ]10,TT : 
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the global correlation factors iir  in (18) are replaced by  

local correlations factors )()(1ˆ *
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differences in the source firing frequencies cause the iir̂  
factors to differ among each other and the condition (20) is 
fulfilled. In order to prevent the equalization of iir̂ factors the 

( )0xR  matrix entering the whitening procedure (13) must be 
calculated over the whole time interval [ ]T,0 . To increase the 
statistical efficiency it is recommended to joint-diagonalize 
the several sets of ),( ττ−xQ matrices with )(τxR matrices 
calculated over different short enough time intervals 
[ ]1, +kk TT .  

Similar solution can be applied to the sources with 
constant firing frequencies. Before entering the whitening 
procedure (13), all the signals in the extended vector of 
measurements (3) should be premultiplied by the positive 
time-varying scalar function )(tf : 

)()()(    , txtftxti ii ⋅=∀∀       (22) 

This introduces non-stationarities to the source amplitudes 
and, hence, to local iir̂  factors. Afterwards, the procedure for 
separation of the non-stationary sources with different time-
varying firing frequencies should be followed. To preserve 
the temporal whiteness of the noise, the function )(tf  
should be periodical and limited in amplitude (a raised sine 
function with strictly positive values is a good example).  

3.2 Source reconstruction  

Once the mixing matrix Â  is reconstructed, the sources 
can be estimated by (11). The noise may seriously hinder the 
original pulse trains. However, according to (11) 1−+ LK  
delayed estimations of each source are reconstructed. By 
normalizing, classifying, aligning, and summing them 
together much more reliable decomposition results are 
obtained.   

4. SIMULATION RESULTS 

The proposed source separation approach was applied to 
the synthetic convolutive mixtures of 5 randomly generated 
close-to-orthogonal pulse sources with length T=5000 and 
average inter-pulse interval of 40 samples. To guarantee the 
temporal independence of sources the lower limit of the 
inter-pulse interval was set to 15 samples. Unit sample 
responses of length L=10 where randomly generated 
(conditional number of the simulated mixing matrix A 
yielded 312) and convoluted with pulse trains to produce 10 
observed measurements. Factor K in (3) was set to 11 
producing 110 extended measurements. According to (22) 
the extended signals were multiplied by a raised sine 
function with the strictly positive values varying between 

a2
1  and a , where a is the maximal measurement value. 

Both the period of sine function (22) and the length of the 
[ ]10,TT time interval in (21) were set equal to 1000 samples. 
The missing unitary matrix U was reconstructed by 
diagonalization of a single set of ),( ττ−xQ matrices 
( 11 −+≤≤+−− LkLK τ ) with )(τxR matrices calculated 
over the [ ]1000,1 sample interval. 

Three performance indices, the number of accurately 
recognized pulses (true positive statistic), the number of 
misplaced pulses (true negative statistic), and the global 
interference-to-signal ratio (ISR) defined as  
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were evaluated in the presence of zero-mean white Gaussian 
noise. The signal-to-noise ratio (SNR) ranged from 0 dB to 
20 dB, at steps of 5 dB, while 20 Monte-Carlo simulation 
runs per each SNR were conducted. Before comparing to the 
original sources the 21 estimations of each source were first 
normalized, classified, aligned according to the pulse 
triggering times and finally summed together. The values of 
the selected performance indices are presented in Tables 1 
and 2. The representative results of reconstructed pulse 
sources are depicted in Fig. 1 (SNR=10 dB) and Fig. 2 
(SNR=5 dB).  

Table 1: Global interference-to-signal ratio (ISR) for 
different SNR (mean ± standard deviation).  

SNR [dB] 20 15 10 5 0 

ISR [%] 3.78 
±0.01 

4.32 
±0.02 

6.53 
±0.09 

16.80 
± 0.32 

24.54 
±0.78 

Table 2: Normalized number (mean ± standard deviation) of 
accurately recognized pulses (T+), and of misplaced pulses 
(T-), in reconstructed sources. The values are averaged over 
all sources.  

SNR [dB] 20 15 10 5 0 

T+ [%] 100.0 
±0.0 

100.0 
±0.0 

 100.0 
±0.0 

 99.64 
± 0.92 

93.72 
 ±4.61 

T - [%] 0.0 
±0.0 

0.0 
±0.0 

0.0 
±0.0 

0.18 
±0.28 

1.77 
±2.68 

 
Figure 1: Reconstructed pulse trains (black) for SNR=10 dB 
in comparison with the original source firing patterns (grey).   

5. CONCLUSIONS 

As demonstrated by the results in Section 4, the method 
successfully suppresses the influence of the additive zero-
mean white noise. Although closely related to the method 
presented in [6] the introduced approach does not relay on 
the identification of special time positions (auto-terms) in 
which only one source is active, and is, hence, less sensitive 
to temporal overlappings of the source pulses. Moreover, the 
(K+L) estimations of each source are retrieved up to a 
scaling factor. Hence, the calculated sources can be further 
improved by averaging the corresponding estimations what 
makes the approach even more noise resistant.  

 
Figure 2: Reconstructed pulse trains (black) for SNR=5 dB in 
comparison with the original source firing patterns (grey).   

Finally, the importance of the differences in firing 
frequencies was discussed and the method for enhancing the 
temporal differences among the local source variances 

iir̂ introduced. When all this fails (when jjii ˆˆ  , rrji =∀∀ ) each 
reconstructed source corresponds to the linear combination 
of only N (out of N[K+L]) original sources which can 
further be separated by multiplicative BSS methods [7]. The 
detailed explanation of this problem reaches beyond the 
scope of this discussion but is available upon the request.  
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