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ABSTRACT

We present here our efforts for characterizing the 3D move-
ments of the right hand and the face of a French female dur-
ing the production of manual cued speech. We analyzed the
3D trajectories of 50 hand and 63 facial fleshpoints during the
production of 238 utterances carefully designed for covering
all possible diphones of the French language. Linear and
non linear statistical models of the hand and face deforma-
tions and postures have been developed using both separate
and joint corpora. We implement a concatenative audiovisual
text-to-cued speech synthesis system.

1. INTRODUCTION

Speech articulation has clear visible consequences. If the
movements of the jaw, the lips and the cheeks are immedi-
ately visible, the movements of the underlying organs that
shape the vocal tract and the sound structure (larynx, velum
and tongue) are not so visible: tongue movements are weakly
correlated with visible movements (R � 0 � 7) [17, 10] and
this correlation is insufficient for recovering essential pho-
netic cues such as place of articulation [2, 7]. Listeners
with hearing loss and orally educated typically rely heavily
on speechreading based on lips and face visual information.
However lipreading alone is not sufficient due to the lack of
information on the place of tongue articulation, the mode of
articulation (nasality or voicing) and to the similarity of the
lip shapes of some speech units (so called labial sosies as [u]
vs. [y]). Indeed, even the best speechreaders do not iden-
tify more than 50 percent of phonemes in nonsense sylla-
bles [14] or in words or sentences [4]. Manual Cued Speech
(MCS) was designed to complement speechreading. Devel-
oped by Cornett [5] and adapted to more than 50 languages
[6], this system is based on the association of speech artic-
ulation with cues formed by the hand. While uttering, the
speaker uses one of his hand to point out specific positions
on the face (indicating a subset of vowels) with a handshape
(indicating a subset of consonants as shown in figure 1).
For more details on the French MCS (FMCS) system please
see http://retore.chez.tiscali.fr/LPC. Numerous studies have
demonstrated the drastic increase of intelligibility provided
by MCS compared to lipreading alone [13, 16] and the ef-
fective facilitation of language learning using FMCS [11]. A
large amount of work has been devoted to MCS perception
but few works have provided insights in the MCS production.
We describe here a series of experiments for gathering data
and characterizing the hand and face movements of a FMCS
speaker in order to implement a cued-speech synthetizer.

Figure 1: French Cued Speech system for consonants.

2. MOTION CAPTURE DATA

We recorded the 3D positions of 113 markers glued on the
hands and face of the subject using a Vicon c

�
motion cap-

ture system with 12 cameras. The basic system delivers the
3D positions of candidate markers at 120Hz. Two different
settings of the cameras enabled us to record three corpora:
� a corpus of handshapes transitions produced in free

space: the cuer produces all possible transitions between
the eight consonantal hand shapes.� a corpus of visemes with no handshape associated. It
consists in the production of all isolated French vowels
and all consonants in symmetrical context VCV, where
V is one the extreme vowels [a], [i] and [u]. This cor-
pus in similar to the one usually used at ICP for cloning
speakers [1].� a corpus of 238 sentences pronounced with cueing the
FMCS.

Corpora 1 and 2 are used to build statistical models of the
hand and face movements separately. The models are then
used to recover missing data in the corpus 3: when cueing
the FMCS, the face obviously hides parts of the hands and
vice versa.

3. ARTICULATORY MODELS OF THE FACE AND
OF THE HAND

The scientific motivation of building statistical models from
raw motion capture concern the study of FMCS: if the posi-
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tions of markers are always accessible and reliable, the kine-
matics of the articulation, of the finger tips and fingers/face
constrictions offer an unique way for studying the production
of FMCS and the laws governing the coordination between
acoustics, face and hand movements during cued speech pro-
duction.

3.1 Face
The basic methodology developed at ICP for cloning facial
articulation consists of an iterative linear analysis [1, 15] us-
ing the first principal component of different subsets of flesh-
points: we thus subtract iteratively the contribution of the jaw
rotation, the lips rounding/spreading gesture, the proper ver-
tical movements of upper and lower lips, of the lip corners
as well as the movement of the throat to the residual data
obtained by iteratively subtracting their contributions to the
original motion capture data. This basic methodology is nor-
mally applied to quasi-static heads. Since the movements of
the head are free in the corpora 2 and 3, we need to solve the
problem of the repartition of the variance of the positions of
the 18 markers placed on the throat between head and face
movements. This problem is solved in three steps:
� Estimation of the head movement using the hypothesis

of a rigid motion of markers placed on the ears, nose
and forehead. A principal component analysis of the 6
parameters of the rototranslation extracted for corpus 3
is then performed and the nmF first components are re-
tained as control parameters for the head motion.� Facial motion cloning using the inverse rigid motion of
the full data. Only naF components are retained as con-
trol parameters for the facial motion.� Throat movements are considered to be equal to head
movements weighted by factors less than one. A joint
optimization of these weights and the directions of nmF
facial deformations is then performed keeping the same
values for the nmF and naF predictors.

These operations are performed using facial data from corpus
2 and 3 with all markers visible. A simple vector quantization
guarantying a minimum 3D distance between selected train-
ing frames (equal here to 2mm) is performed before model-
ing. This pruning step provides statistical models with con-
ditioned data. The final algorithm for computing the 3D po-
sitions of P3DF of the 63 face markers of a given frame is:

mvt � mean mF � pmF � eigv mF ;
P3D � reshape � mean F � paF � eigv F � 3 � 63 	 ;
for i : � 1 to 63

M � mvt �
� wmF � : � i 	 ;
P3DF � : � i 	�� Rigid Motion � P3D � : � i 	�� M 	 ;

end
where mvt is the head movements controlled by the nmF

parameters pmF, M is the movement weighted for each
marker (equal to 1 for all face markers, less than 1 for mark-
ers on the throat) and P3D are the 3D positions of the markers
without head movements controlled by naF parameters paF.

3.2 Hand
Building a statistical model of the hand deformations is more
complex. If we consider the forearm as being the carrier of
the hand (the 50 markers undergo a rigid motion that will
be considered as the forearm motion), the movements of
the wrist, the palm and the phalanges of the fingers have

quite complex non linear influence on the 3D positions of
the markers. These positions reflect also poorly the underly-
ing rotations of the joints: skin deformation induced by the
muscle and skin tissues produce very large variations of the
distances between markers glued on the same phalange. The
model of hand deformations is built in four steps:� Estimation of the hand movement using the hypothesis

of a rigid motion of markers placed on the forearm in
corpus 1. A principal component analysis of the 6 pa-
rameters of this hand motion is then performed and the
nmH first components are retained as control parameters
for the hand motion.� All possible angles between each hand segment and the
forearm as well between successive phalanges (using the
inverse rigid motion of the full hand data) are computed
(rotation, twisting, spreading)� A principal component analysis of these angles is then
performed and the naH first components are retained as
control parameters for the hand shaping.� We then computed the sin() and cos() of these predicted
values and perform a linear regression between these
2*naH+1 values (see vector P below) and the 3D coordi-
nates of the hand markers.

The step 4 makes the hypothesis that the displacement in-
duced by a pure joint rotation produce an elliptic movement
on the skin surface (together with a scaling factor). The final
algorithm for computing the 3D positions P3DH of the 50
hand markers for a given frame is:

mvt � mean mH � pmH � eigv mH;
ang � mean A � paH � eigv A;
P �� 1 cos � ang 	 sin � ang 	�� ;
P3DH � Rigid Motion � reshape � P � Xang � 3 � 50 	�� mvt 	 ;

where mvt is the forearm movement controlled by the
nmH parameters pmH and ang is the set of angles controlled
by the naH parameters paH.

(a) incomplete motion cap-
ture data

(b) reconstruction

Figure 2: Reconstruction of a FCS frame. Part of the throat
and fingers have not been captured by the motion tracking
system but have been reconstructed properly by the face and
hand models.

3.3 Modeling results
Using the corpus 1, the training data for handshapes consists
of 8446 frames. Using corpus 2 and 3, the training data for
facial movements consists of 4938 frames. We retain naH
= 12 handshape parameters and naF = 7 face parameters.
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Figure 2 shows an example of a raw motion capture frame
and the predicted hand and face shapes. Using the first 68
utterances of the corpus 3 as training data (68641 frames) and
a joint estimation of hand motion and handshapes (resp. head
motion and facial movements), the resulting average absolute
modeling error for the position of the visible markers is equal
to 2mm for the hand and 1mm for the face (see figure 3).
Regularization of the test data (the next 114 utterances) by
the hand and face models do not lead to a substancial increase
of the mean reconstruction error except for a few sentences
(utterance 110 to 136) where the face error is doubled.

(a) learning the models with only the first 68 sentences

(b) learning the models with all the sentences

Figure 3: Mean and standard deviation of the mean recon-
struction error for each sentence processed by the hand (top)
and face (bottom) models.

4. TOWARDS AN AUDIOVISUAL TEXT-TO-CUED
SPEECH SYNTHESIS SYSTEM

This corpus provides an extensive coverage of the move-
ments implied by FMCS and we have designed a first audio-
visual text-to-cued speech synthesis system using concate-
nation of multimodal speech segments. If concatenative syn-
thesis using a large speech database and multi-represented
speech units is largely used for acoustic synthesis [9] and
more recently for facial animation [12], this system is to our
knowledge the first system attempting to generate hand and
face movements and deformations together with speech us-
ing the concatenation of gestural and acoustic units. Two
units will be considered below: diphones for the generation
of the acoustic signal and facial movements; and dikeys for
the generation of head and hand movements.

4.1 Coverage of the corpus: towards text-to-cued speech
synthesis
Concatenating segments
This corpus was designed initially for acoustic concatena-
tive speech synthesis. The coverage of polysounds (part of
speech comprised between successive stable allophones, i.e.
similar to diphones but excluding glides as stable allophones)
is quasi-optimal: we collect a minimum number of 2 sam-
ples of each polysound with a minimal number of utterances.

(a) places of the reflexive markers (b) motion capture
data

(c) shape model (d) appearance
model

Figure 4: From motion capture data to a videorealistic virtual
speech cuer. In figures (b), (c) and (d), a [bε] syllabe is cued.

Although not quite independent, hand placements and hand
shapes are almost orthogonal. The coverage of the corpus in
terms of successions of hand placements and hand shapes is
quite satisfactory : all succession of hand shapes and hand
position are present. A first text-to-cued speech system has
been developed using these data. This system proceeds in
two steps:
� the sound and facial movements are handled by a first

concatenative synthesis using polysounds (and diphones
if necessary) as basic units� the head movements, the hand movements and the hand
shaping movements are handled by a second concatena-
tive synthesis using dikeys as basic units.

Phasing speech and hand gesture

Once selected these dikeys are further aligned with the mid-
dle of the consonnant for a full CV realizations, vocalic on-
sets for ”isolated” vowels and consonantal onsets for ”iso-
lated” consonants (this phasing relations are deduced from
a preliminary data analysis [8]). If the full dikey does not
exist, we seek for replacement dikeys by replacing the sec-
ond hand placement of the dikey by the closest one that do
exist in the dikey dictionary. The proper dikey will be still
realized because an anticipatory smoothing procedure [3] is
applied that consider the onset of each dikey as the intended
target: a linear interpolation of hand placement applied grad-
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ually within each dikey copes thus easily with a small (or
even larger) change of the final target imposed by the onset
target frame of the next concatenated dikey. This two-step
procedure generates quite acceptable synthetic cued speech.
It however considers the head movements to be entirely part
of the realization of hand-face constrictions (an average of
20% of the constriction gesture is done by the head) and uses
for now a crude approximation of the speech/gesture coordi-
nation.

4.2 From gestures to appearance
The text-to-cued speech synthesis system sketched above de-
livers trajectories of a few fleshpoints placed on the surface of
the right hand and face. We are currently interfacing this tra-
jectory planning with a detailed shape and appearance model
of the face and hand of the original speaker. High definition
models of these organs is first mapped onto the existing face
and hand parameter space. A further appearance model using
video-realistic textures is then added (see figure 4).

5. CONCLUSIONS AND PERSPECTIVES

The immense benefits of FMCS in terms of giving access
to the language structure and speech comprehension to deaf
people should be grounded on a deep understanding of its
implementation by actual speakers. Although precise qual-
itative guidelines have been specified by Orvin Cornett, the
FMCS is a living language whose phonetic structure is con-
stantly enriched by cuers. The observation of cuers in action
is thus a perquisite for developing technologies that will as-
sist deaf people in learning the FMCS. Low rate transmission
of MCS by watermarking actual audiovisual transmission as
put forward by the ARTUS consortium should also benefit
from a better understanding of the kinematics of the different
segments involved in the production of MCS. The database
recorded, analyzed and characterized here is currently been
exploited within a multimodal text-to-FMCS speech system
that will supplement or replace on demand subtitling for TV
broadcasting or home entertainment.
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R. Brun. Analysis and synthesis of the 3d movements
of the head, face and hands of a speech cuer. Journal of
the Acoustical Society of America, submitted for publi-
cation.

[9] A. J. Hunt and A. W. Black. Unit selection in a con-
catenative speech synthesis system using a large speech
database. In International Conference on Acoustics,
Speech and Signal Processing, pages 373–376, Atlanta,
GA, 1996.

[10] J. Jiang, A. Alwan, L. Bernstein, P. Keating, and
E. Auer. On the correlation between facial movements,
tongue movements and speech acoustics. In Proceed-
ings of International Conference on Speech and Lan-
guage Processing, pages 42–45, Beijing, China, 2000.

[11] J. Leybaert. The role of cued speech in language pro-
cessing by deaf children: an overview. In Auditory-
Visual Speech Processing, pages 179–186, St Jorioz,
France, 2003.

[12] S. Minnis and A. P. Breen. Modeling visual coartic-
ulation in synthetic talking heads using a lip motion
unit inventory with concatenative synthesis. In Interna-
tional Conference on Speech and Language Processing,
pages 759–762, Beijing, China, 1998.

[13] G. Nicholls and D. Ling. Cued speech and the reception
of spoken language. Journal of Speech and Hearing
Research, 25:262–269, 1982.

[14] E. Owens and B. Blazek. Visemes observed by hearing-
impaired and normal-hearing adult viewers. Journal of
Speech and Hearing Research, 28:381–393, 1985.
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