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ABSTRACT

Emotional speech recognition aims to automatically classify
speech units (e.g., utterances) into emotional states, such as
anger, happiness, neutral, sadness and surprise. The major
contribution of this paper is to rate the discriminating capa-
bility of a set of features for emotional speech recognition
when gender information is taken into consideration. A total
of 87 features has been calculated over 500 utterances of the
Danish Emotional Speech database. The Sequential Forward
Selection method (SFS) has been used in order to discover
the 5-10 features which are able to classify the samples in
the best way for each gender. The criterion used in SFS is the
crossvalidated correct classification rate of a Bayes classifier
where the class probability distribution functions (pdfs) are
approximated via Parzen windows or modeled as Gaussians.
When a Bayes classifier with Gaussian pdfs is employed, a
correct classification rate of 61.1% is obtained for male sub-
jects and a corresponding rate of 57.1% for female ones. In
the same experiment, a random classification would result in
a correct classification rate of 20%. When gender informa-
tion is not considered a correct classification score of 50.6%
is obtained.

1. INTRODUCTION

This paper is devoted to emotional speech recognition, that
deals with automatic classification of utterances into emo-
tional states. Applications of emotional speech recognition
can be foreseen in the broad area of human-computer inter-
action or in measuring immersion in Virtual Reality environ-
ments [9]. In [1], 32 statistical properties of energy, pitch,
and spectral features of emotional speech have been tested.
This initial set of features is augmented to 87 features, as it
can be seen in section 2, by including more statistical fea-
tures of pitch, spectrum, and energy. In section 3 the total set
of features is calculated over 500 utterances of the Danish
Emotional Speech (DES) database [8]. In section 4, the dis-
crimination capability of each feature is studied. In sections
5 and 6, the joint discrimination capability of several features
is assessed.

2. DATA

After a detailed review on available emotional speech
databases [4], we decided to work on DES because it was
easily accessible and well annotated. The data used in the ex-
periments are sentences and words that are located between

This work has been partially supported by the FP6 European Union Net-
work of Excellence “Multimedia Understanding through Semantics, Com-

putation and LEarning” (IST-2002-2.3.1.7).

two silent segments. For example: *Nej’ (No), "Ja’ (Yes),
’Kom med dig’ (Come with me!). The total amount of data
used is 500 speech segments (with no silence interruptions),
which are expressed by four professional actors, two male
and two female and equally separated to each gender. Speech
is expressed in 5 emotional states, such as anger, happiness,
neutral, sadness, and surprise.

3. FEATURE EXTRACTION

The pitch contour is derived by applying the method de-
scribed in [2]. The method estimates the pitch from energy
peaks of the short-term autocorrelation function computed
over a window of duration 15 msec. We assume that the
pitch frequencies are limited to the range 60-320 Hz. For es-
timating the 4 formant contours we use the method proposed
in [3]. The method finds the angle of the poles in z-plane
of an all-pole model and considers the poles that are further
from zero as indicators of formant frequencies. To estimate
the energy contour, a simple short-term energy function has
been used. After the evaluation of the primary feature con-
tours, secondary (statistical) features were extracted from the
primary ones. The statistical features employed in our study
are grouped in several classes. The features are referenced
by their corresponding indices throughout the analysis fol-
lowing.

3.1 Spectral features

The set of spectral features is comprised by statistical
properties of the first 4 formants and the energy below 250
Hz.

1. Energy below 250 Hz

2. - 5. Mean value of the first, second, third, and fourth
formant

6. - 9. Maximum value of the first, second, third, and fourth
formant

10. - 13. Minimum value of the first, second, third, and
fourth formant

14. - 17. Variance of the first, second, third, and fourth
formant

3.2 Pitch features

Pitch features are statistical properties of the pitch contour.
The plateaux of the contours are detected as follows. The
first and second derivative of the contour are estimated
numerically. The derivatives are smoothed with a moving
average of a 15 msec window length. If the first derivative
is approximately zero and the second derivative is positive,
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the point belongs to a plateau at a local minimum. If the
second derivative is negative, it belongs to a plateau at a
local maximum.

18. - 22. Maximum, minimum, mean, median, interquartile
range

23. Pitch existence in the utterance expressed in percentage
(0-100%)

24. - 27. Maximum, mean, median, interquartile range of
duration of plateaux at minima

28. - 30. Mean, median, interquartile range of values of
plateaux at minima

31. - 35. Maximum, mean, median, interquartile range, up-
per limit (90%) of duration of plateaux at maxima

36. - 38. Mean, median, interquartile range of values of
plateaux at maxima

39. - 42. Maximum, mean, median, interquartile range of
durations of rising slopes

43. - 45. Mean, median, interquartile range of values of ris-
ing slopes

46. - 49. Maximum, mean, median, interquartile range of
durations of falling slopes

50. - 52. Mean, median, interquartile range of values of
falling slopes

53. Number of inflections in FO contour

3.3 Intensity (Energy) features

Energy features are statistical properties of the energy
contour.

54. - 58. Maximum, minimum, mean, median, interquartile
range

59. - 62. Maximum, mean, median, interquartile range of
durations of plateaux at minima

63. - 65. Mean, median, interquartile range of values of
plateaux at minima

66. - 70. Maximum, mean, median, interquartile range,
upper limit (90%) of duration of plateaux at maxima

71. - 73. Mean, median, interquartile range of values of
plateaux at maxima

74. - 77. Maximum, mean, median, interquartile range of
durations of rising slopes

78. - 80. Mean, median, interquartile range of values of
rising slopes

81. - 84. Maximum, mean, median, interquartile range of
durations of falling slopes

85. - 87. Mean, median, interquartile range of values of
falling slopes

4. EVALUATION OF SINGLE FEATURES

In order to study the classification ability of each feature,
a rating method has been implemented. Each feature is
evaluated by the ratio between the between-class variance
(07) and the within-class variance (02). The between-class
variance measures the distance between the class means,
whereas the within-class variance measures the dispersion
within each class [7]. The best features should be charac-
terized by a large Gg and a small g2. The 15 features with
the highest ration (O g /02) are shown in Figure 1, where both

o} and 02 are depicted. The evaluation is rather qualitative

than quantitative, because it implies indirectly that classifica-
tion information is enclosed in a single feature. We note that
y axis has positive values.
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Figure 1: Feature assessment based on the ratio between the
between class variance (Gb) and the within-class variance

(02) for each gender.
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Figure 2: From the inspection of Figure 2 we conclude
that a maximum likelihood classifier using feature 78 will
classify low energy measurements to neutral and sadness,
whereas high energy instances to anger, surprise, and hap-
piness. Males differ from females in sadness and surprise.

In females, energy features dominate in the first 15 posi-
tions, whereas in males both energy and pitch features ap-
pear. Feature 78 (mean value of rising slopes of energy)
shows remarkably good results, namely a correct classifica-
tion rate of 41% for male, 36% for female, and 40% for both,
when it is employed in a Bayes classifier. The class pdfs of
feature 78 for the five emotions under study are plotted in
Figure 2. We note that the pdf curves are splines fitted to
the discrete pdf of each class. The energy level is simply the
norm of 15 msec frames that overlap by 10 msec. Other fea-
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tures such as those with indices 54, 56, 58, 79, 85, 86 and 87
behave similarly.

Feature 43 (mean value of rising slopes of pitch) achieves a
correct classification rate of 35.9% for male, 39.1% for fe-
male, and 34% for both genders, when it is employed in a
Bayes classifier. The class pdfs of feature 43 are depicted in
Figure 3. Females have increased frequency levels for feature
43 only in the categories of neutral, happiness and sadness.
Feature 20 (mean value of pitch contour) achieves a correct
classification rate of 37.5% for male and 33.5% for female,
when it is employed in a Bayes classifier. The class pdfs of
feature 43 are depicted in Figure 4. However, it does not
yield significant results when gender information is not used.
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Figure 3: Pdfs of mean value of rising slopes of pitch for 5
emotions.

5. AUTOMATIC FEATURE SELECTION

The (SFS) algorithm is used for automatic feature selection
[5]. The criterion employed is the correct classification rate
achieved by the selected features. Figure 5 demonstrates the
correct classification rate obtained for several feature num-
bers. The SFS is applied to two classifiers, namely the Bayes
classifier where class pdfs are approximated via Parzen win-
dows or modeled as Gaussians. The correct classification rate
is calculated by crossvalidation where 90% of the data were
used for training and 10% for validation. We have chosen
as best those features selected by SFS for a Bayes classifier
when class pdfs are modeled as Gaussians. The features in-
cluded in the row of Table 1 referred to as “Bayes with Gaus-
sian pdfs (male)” can achieve a 61.1% correct classification
rate. The feature selection shown in the row of Table 1 re-
ferred to as “Bayes with Gaussian pdfs (female)” can achieve
a correct classification rate of 57.1%. When gender informa-
tion is not considered, the feature selection in the last row of
Table 1 achieve a 50.6% correct classification rate.

6. CONFUSION MATRICES

In order to figure out the misclassifications introduced by a
Bayes classifier, we compare the confusion matrices of Bayes
classifiers (Tables 2, 3 and 4) to the confusion matrix of hu-
mans (Table 5). The latter confusion matrix was obtained
from [8]. The confusion matrices in Tables 2, 3 and 4 have
been calculated by taking the average classification rate of a
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Figure 4: Males are separated from females at the states hap-
piness, neutral, sadness, and surprise using the mean value of
pitch contour.

Sequential Forward Selection
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Figure 5: 10 best features selected by the sequential forward
selection algorithm using as criterion the correct classifica-
tion rate for each classifier.

Bayes classifier with Gaussian pdfs for the feature selections
shown in Table 1 over 225 replicas of the experiment using
crossvalidation, where 90% of the data were used for training
and 10% for validation.

When gender information is not taken into consideration then
a Bayes classifier that employes Gaussian pdfs achieves a
50.6% correct classification rate (see Table 2). When gender
information is included then the classifier achieves a 61.1%
and 57.1% correct classification rate for males and females,
respectively.

From the diagonal entries in Table 2 we find out that the au-
tomatic speech emotion classification system commits gross
errors on the emotional states of happiness and anger, when
gender information is not included. The numbers in boldface
indicate the cases where a Bayes classifier is more than twice
as errorful as the human subjects. From the diagonal entries
in Table 3, we notice that severe errors exist only in the emo-
tional states of anger and sadness for females. From the in-
spection of the diagonal entries in Tables 2 and Tables 4, we
find out that the errors for happiness and anger are signifi-
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Table 1: 10 best features selected by the sequential forward
selection algorithm using as criterion the correct classifica-
tion rate for each classifier.

Forward selection steps

Table 3: Confusion matrix of a Bayes classifier applied to
utterances of female subjects. The result is a 57.1% correct
classification rate.

Classification rates of a Bayes classifier for female subjects

Classifier\Step 1 23 456 7 8 9 10 Stimuli Response (%)

Bayes with Gaussian | 54 43 74 81 21 78 8 69 18 - Neutral| Surpris¢ Happiness| Sadness| Anger
class pdfs (male) Neutral 55 13 6 20 6
Bayes with Parzen | 54 74 20 67 86 58 17 30 - - Surprise | 12 61 14 6 7
windows (male) Happinesy 12 11 54 4 18
Bayes with Gaussian | 43 78 20 25 10 77 6 17 82 45 Sadness | 13 4 4 58 21
class pdfs (female) Anger 6 10 18 9 57

Bayes with Parzen | 43 80 18 39 86 - - - - -
windows (female)
Bayes with Gaussian | 78 18 4526 7 - - - - -
class pdfs

cantly reduced when utterances of male subjects are classi-
fied.

Table 2: Confusion matrix of a Bayes classifier when gender
information is not exploited. When crossvalidation is used, a
correct classification rate of 50.6% is obtained.

Classification rates of a Bayes classifier for subjects of both

genders
Stimuli Response (%)
Neutral| Surprisel Happiness| Sadness| Anger

Neutral | 51 15 2 28 4
Surprise | 5 64 7 9 14
Happiness 9 24 36 13 18
Sadness | 17 6 2 70 5
Anger 12 19 26 12 31

7. DISCUSSION

This study was based on features related to the energy,
the pitch, and the formants of a speech signal in order to
classify the emotional content of speech. The rates reported
in Tables 3 and 4 can be further improved by analyzing
the properties of the above mentioned two-class problems.
The features which can separate two classes could be
different from those which separate 5 classes. By designing
proper decision fusion algorithms, we may combine several
two-class classifiers and the overall system could outperform
the rates obtained by the five-class classifiers.
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