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ABSTRACT

A method for the computationally efficient sliding window
time-updating of the Capon and APES spectral estimators
based on the time-variant displacement structure of the data
covariance matrix is presented. The proposed algorithm
forms a natural extension of the computationally most effi-
cient algorithm to date, and offers a significant computational
gain as compared to the computational complexity associated
with the batch re-evaluation of the spectral estimates for each
time-update.

1. INTRODUCTION

Spectral estimation finds applications in a wide range of
fields, and has received a vast amount of interest in the litera-
ture during the last century. Due to their inherent robustness
to model assumptions, there has lately been a renewed inter-
est in non-parametric spectral estimators. Among the non-
parametric approaches, the data-dependent filterbank spec-
tral estimators have many promising properties, allowing for
very accurate, computationally efficient, high-resolution es-
timates (see, [1] and the references therein). Both the re-
cent APES estimator [2] and the amplitude spectrum Capon
estimator, (the estimator obtained when using the classical
Capon filter [3, 4]), to estimate a sinusoidal component at
the centre frequency of the bandpass filter, can be seen as
matched filterbank methods [5]. Given the excellent perfor-
mance of these estimators, several authors have worked on
finding efficient implementations (see [1] for references); the
most efficient implementation to date was been presented in
[6]. This implementation is based on the evaluation of the
inverse Cholesky factors of the covariance matrix estimate
using its inherent displacement structure [7]. Given their
low displacement rank, these Cholesky factors can be ob-
tained efficiently using the generalized Schur recursion. In
this work, we present a novel computationally efficient ap-
proach to time-updating the efficient estimator in [6] using a
sliding window update of the measured data. The presented
update is based on the time-variant displacement structure,
allowing for the time-updating of the inverse Cholesky fac-
tors of the (forward-backward averaged) covariance matrix
estimate using the numerically robust time-variant general-
ized Schur algorithm presented in [8]. The resulting time-
updated spectral estimates offers a significant computational
gain as compared with the previously required recalculation
of the Cholesky factors of the covariance matrix.

2. THE MATCHED FILTERBANK SPECTRAL
ESTIMATORS

The matched filterbank spectral estimators [2, 5] are con-
structed from a set of data-adaptive, frequency dependent,
L-tap FIR filters, hω , such that

hω = argmin
hω

h∗ωQωhω subject to h∗ωaω = 1 (1)

where Qω is the L×L covariance matrix of the signal con-
sisting of all frequencies except ω , (·)∗ denotes the conjugate
transpose, and aω is a L-tap Fourier vector, that is,

aω =
[

1 eiω . . . eiω(L−1)
]T

(2)

The classical Capon filter is obtained by minimizing (1) us-
ing the covariance matrix of the measured data as an estimate
of Qω , where

QCapon
ω = Rx

4
= E{xtx∗t } (3)

and

xt = [ x(t) x(t +1) . . . x(t +L−1) ]T (4)

Similarly, the APES filter is obtained by minimizing (1) us-
ing

QAPES
ω = Rx−XωX∗

ω (5)

where (·)∗ denotes the conjugate transpose, and

Xω =
1
M

M

∑
t=1

xte
−iωt (6)

Here, M = N− L + 1. We remark that the choice of L is a
compromise between resolution and statistical stability. The
larger L, the better the resolution but the worse the statisti-
cal stability. Further, large values of L increase the dimen-
sion of Rx and thus the computational burden of evaluating
the spectral estimate. The corresponding (amplitude) spec-
tral estimate is obtained according to [2, 5] as

φ̂x(ω) = h∗ωXω =
a∗ωQ−1

ω Xω

a∗ωQ−1
ω aω

(7)

We note that using the matrix inversion formula for the APES
estimate, one may write (7) for both the Capon and APES es-
timates using a number of matrix-vector multiplications and
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Fourier transforms of the inverse Choleksy factor of Rx (see
also [1, 5]). This fact is exploited in the efficient implemen-
tation of (7) presented in [6], which is based on the inherent
displacement structure of Rx to efficiently evaluate the in-
verse Cholesky factors of Rx using the generalized Schur al-
gorithm (see, e.g., [7]); together with efficient matrix-vector
products and the Fast Fourier transform (FFT) this forms the
efficient implementation. As Rx is typically unknown, it is
normally replaced by the forward-backward averaged outer-
product estimate (see [9] for a more detailed discussion on
the benefits of this estimator as compared to the forward-only
estimator)

R̂ f b
x =

1
2

(
R̂x +JR̂T

x J
)
, (8)

where J is the L×L exchange (or reversal) matrix formed as

J =




0 1

. .
.

1 0


 (9)

and

R̂x =
1
M

M

∑
t=1

xtx∗t (10)

In this work, we consider the problem of time-updating
φ̂x(ω) as additional data samples become available, by ex-
ploiting the time-variant displacement structure of R̂ f b

x to ef-
ficiently form a time-update of the inverse Cholesky factors.
As a step in the calculation of the update, it is necessary to
update the Cholesky (i.e., non-inverse) factor itself.

3. TIME-UPDATING THE CHOLESKY FACTORS

Numerous signal processing problems form matrices exhibit-
ing a significant degree of structure. This structure can
be exploited to reduce the computational burden as well as
the memory requirements for operations on such matrices.
Herein, we focus on the displacement structure of the sam-
ple covariance matrix to find an efficient time-updating al-
gorithm. A time-variant Toeplitz-like n× n matrix R(t) is
said to have a time-variant displacement structure [7, 8] if
the matrix difference ∇R(t) defined by

∇R(t) = R(t)−F(t)R(t−∆)F∗(t) (11)

has low rank, say r(t), where r(t)¿ n, for some lower trian-
gular matrix F(t). The time-variant displacement rank, r(t),
provides a measure of the extent of the structure present, with
lower rank indicating a stronger degree of structure. Thus, if
r(t) approaches n, there is little point in pursuing the dis-
placement technique. Note that the sliding window time-
updating of the estimated forward-backward covariance ma-
trix estimate can be expressed, without loss of generality, as

R̂ f b
x (t) = F(t)R̂ f b

x (t−1)F∗(t)+G(t)J(t)G∗(t) (12)

allowing for a time-variant displacement structure with ∆ = 1
and F(t) = I. Combining (11) and (12) yields

∇R̂ f b
x (t) = G(t)J(t)G∗(t) (13)

where G(t) is an n×r(t) so-called generator matrix and J(t)
is an r(t)× r(t) full rank signature matrix with either ±1’s

along its diagonal. Here1,

G(t) =




x∗(N+i) x(N−p+1+i) x∗(p−1+i) x(i)
x∗(N−1+i) x(N−p+2+i) x∗(p−2+i) x(1+i)
x∗(N−2+i) x(N−p+3+i) x∗(p−3+i) x(2+i)

...
...

...
...

x∗(N−p+1+i) x(N+i) x∗(i) x(p−1+i)




where N is the sample frame length, p is the filter order and i
is the integer time-update index (starting at i = 1) represent-
ing the shift of one sample in the frame. Further,

J(t) =




+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1


 (14)

From (14), it can be seen that, r(t) = 4, for the forward-
backward covariance matrix estimate. This value of r(t) can
often be significantly less than typical values of n, which
depending on the application can easily be very large (i.e.
> 1000). Also, note that the positive-definite nature of
R̂ f b

x (t) guarantees the existence of a unique (lower triangu-
lar) Cholesky factor, L(t), such that

R̂ f b
x (t) = L(t)L∗(t), (15)

which by expanding (12), can be expressed as [8]

[ L(t) 0 ]
[

L∗(t)
0

]
= [ F(t)L(t−1) G(t) ]

×
[

In 0
0 J(t)

][
L∗(t−1)F∗(t)

G∗(t)

]
. (16)

Hence, it follows that there exists an [In⊕J(t)]-unitary rota-
tion matrix, Γ(t), such that

[ L(t) 0 ] = [ F(t)L(t−1) G(t) ]Γ(t) (17)

The matrix, Γ(t), has the effect of rotating the generator ma-
trix onto the expression F(t)L(t−1) to produce the updated
Cholesky factor L(t) and a block zero entry in the left-hand
side of (17). The rotational transform, Γ(t), is typically im-
plemented as a sequence of elementary transforms, such that
Γ(t) = Γ0(t)Γ1(t), . . . ,Γn(t), where Γk(t) annihilates the kth

row of the generator matrix, for example2,



l g g
l l g g
l l l g g
l l l l g g


Γ0(t)−−−→




l′ 0 0
l′ l g′ g′
l′ l l g′ g′
l′ l l l g′ g′


Γ1(t)−−−→ . . .

. . . Γn(t)−−−→




l′ 0 0
l′ l′ 0 0
l′ l′ l′ 0 0
l′ l′ l′ l′ 0 0


 (18)

1The time indices are depicted as subscripts for space considerations.
2In this example, (18) shows a rank-2 generator matrix, with x′ indicating

time-updated elements of an given matrix.
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The sequence of rotations in (18) updates one column of the
Cholesky factor at a time, leaving the lower columns un-
changed. Further, note that the remaining rows of the genera-
tor matrix are also updated, this enables the correct updating
of the next column of the Cholesky factor in turn. This proce-
dure continues until all the n columns of L(t−1) have been
updated to L(t) and the entire generator matrix, G(t) has
been completely nullified. In this way, the updated columns
of the Cholesky factor are evolved in an efficient recursive
manner. Such a recursion is also beneficial for efficient use of
memory allocation and numerical contraction during matrix-
vector products.

The rotation matrix Γ(t) can be formed in numerous dif-
ferent ways. Here, a combination of the Householder (or Hy-
perbolic) and Givens (or Circular) rotations are used. Both of
these transforms have the general form

[ a b ]Θ = [ α 0 ] (19)

where

αH =
√
|a|2−|b|2 (20)

αG =
√
|a|2 + |b|2 (21)

The corresponding rotation matrices for a Householder and a
Givens rotation, respectively, are given as

ΘH =
1√

|a|2−|b|2
[

a −b
−b∗ a

]
(22)

ΘG =
1√

|a|2 + |b|2
[

a b
b∗ −a

]
(23)

The Givens rotation is used for “updating” the factor with
new samples and the Hyperbolic rotation has the effect of
“downdating” the factor by removing those samples which
are no longer present in the time-updated sample frame. In
this way, an appropriate combination of rotations can be de-
termined to correctly time-update each Cholesky factor col-
umn vector in turn. It should be noted that, in practice, each
column of the Cholesky factor is concatenated with the gen-
erator matrix to make an n×{r(t)+1}matrix. Then, as each
vector is updated, this process is repeated for n = n− 1 as
each row of G(t) is annihilated until all the column vectors
of the new Cholesky factor are produced. Thus, an appropri-
ate rotation matrix, Γ(t), is an {r(t)+1}×{r(t)+1} matrix
of the form

Γk(t) =




L0
δ

G1
α

L0.G2
α .β −L0.G3

β .γ −L0.G4
γ .δ

G∗1
δ −L0

α
G∗1.G2

α.β −G∗1.G3
β .γ −G∗1.G4

γ.δ
G∗2
δ 0 −α

β −G∗2.G3
β .γ −G∗2.G4

γ.δ

−G∗3
δ 0 0 β

γ
G∗3.G4

γ .δ

−G∗4
δ 0 0 0 γ

δ




(24)

where

α =
√
|L0|2 + |G1|2, (25)

β =
√
|α |2 + |G2|2 (26)

γ =
√
|β |2−|G3|2, (27)

δ =
√
|γ|2−|G4|2 (28)

Whilst the time-updating of the Cholesky factor is interest-
ing in itself, for instance for solving sets of linear equations
by simple back-substitution or Gaussian elimination, it can
not be used to efficiently find the time-update of the filter-
bank spectral estimate. However, it is possible to extend the
above procedure to also yield the inverse Cholesky factor by
augmenting (18) as follows [8]




l g g
l l g g
l l l g g
l l l l g g
l−∗ l−∗ l−∗ l−∗ 0 0
0 l−∗ l−∗ l−∗ 0 0
0 0 l−∗ l−∗ 0 0
0 0 0 l−∗ 0 0




Γ0(t)−−−→




l′ 0 0
l′ l g′ g′
l′ l l g′ g′
l′ l l l g′ g′
l′−∗ l−∗ l−∗ l−∗ w w
0 l−∗ l−∗ l−∗ 0 0
0 0 l−∗ l−∗ 0 0
0 0 0 l−∗ 0 0




Γ1(t)−−−→ . . .

. . . Γn(t)−−−→




l′ 0 0
l′ l′ 0 0
l′ l′ l′ 0 0
l′ l′ l′ l′ 0 0
l′−∗ l′−∗ l′−∗ l′−∗ w′′′ w′′′
0 l′−∗ l′−∗ l′−∗ w′′ w′′
0 0 l′−∗ l′−∗ w′ w′
0 0 0 l′−∗ w w




(29)

Here, the upper triangular (or transpose conjugate) inverse
Cholesky factor, L−∗(t − 1), has been appended below the
matrix in (18). Further, an n× r(t) matrix of zeros is also
appended to produce the above 2n×{n + r(t)} matrix. By
applying the same combination of Householder and Givens
rotations as in 24, the time-update of the inverse Cholesky
factor can be achieved efficiently, yielding one column vec-
tor per iteration. The rotations onto the null matrix produces
a kind of inverse generator matrix which is required to cor-
rectly update each inverse Cholesky factor column vector in
turn.

4. NUMERICAL EXAMPLE

As an illustration of the superior quality of the filterbank
spectral estimators, the amplitude spectral Capon estimate is
shown in Figure 1 for a time-varying signal consisting of 3
complex-valued sinusoids. Here, the estimates are computed
for 256 frequency points using N = 64 samples for each time
step, using a L = 16-tap adaptive filter. As a comparison,
Figure 2 shows the (unwindowed) Spectrogram spectral es-
timate for the same data set, clearly illustrating the superior
resolution of the Capon estimator. Further, Figure 3 illus-
trates the computational gain of the proposed time-updating
of the Capon and the APES spectral estimators for varying
filter lengths as compared to the brute-force re-evaluation of
the spectral estimates for each time-update using the efficient
implementation in [6].

The results shown in Figure 3, were obtained from a
Matlabr implementation comparing the time taken to com-
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Figure 1: Capon estimate of time-varying signal.
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Figure 2: Spectrogram estimate of time-varying signal.

pute the spectral estimates of a given complex data sequence
for varying filter lengths. Measurements were taken af-
ter each algorithm had been looped 100 times to minimise
any error margins associated with spurious processor loading
from the operating system (though this effect is still some-
what evident). The graph shows that significant computa-
tional gains of more than 2 times can be achieved with filter
lengths > 800 for the Amplitude Spectrum Capon (ASC) es-
timator and this increases exponentially for greater L.

5. CONCLUSIONS

In the presented paper, we have proposed a time-updating
implementation of the Capon and the APES spectral estima-
tors based on the updating of the inverse Cholesky factors
of the forward-backward averaged sample covariance matrix.
This updating can be found via the numerically robust time-
variant generalized Schur algorithm, providing a natural ex-
tension of the currently most efficient batch implementation
of the estimators. Numerical simulations indicate a signifi-
cant computational gain over the batch estimation methods
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Figure 3: Computational gain of the proposed time-updated
ASC and APES spectral estimators as compared to the brute-
force re-evaluation using [6].

for larger filter lengths. Furthermore, initial studies of the er-
ror propagation show the proposed method to be preferable
to a sliding window update of the covariance matrix estimate.
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