ALGEBRAIC TECHNIQUES FOR THE BLIND DECONVOLUTION OF CONSTANT MODULUS SIGNALS

Lieven De Lathauwer

ETIS, UMR 8051 (CNRS, ENSEA, UCP)
6, avenue du Ponceau, BP 44, F 95014 Cergy-Pontoise Cedex, France
email: delathau@ensea.fr

ABSTRACT
In this paper we derive algebraic algorithms for the blind extraction of Constant Modulus source signals from convolutive mixtures. In the single-channel case the equalizer follows from the best rank-1 approximation of a fourth-order tensor. In the multi-channel case we consider the case of paraunitary mixtures. The solution can then be obtained by means of a simultaneous matrix decomposition.

1. INTRODUCTION
In this paper we derive deterministic algorithms for the Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) blind deconvolution of Constant Modulus (CM) signals. These techniques extend the Analytic Constant Modulus Algorithm (ACMA) [15] which applies to instantaneous mixtures.

The results are obtained from combining the derivation of ACMA with principles of subspace processing [11] and concepts of (multilinear algebra [2, 5, 6, 7, 13].

We consider the following data model:

\[\hat{Y}(n) = \sum_{l=0}^{L-1} A(l) X(n-l), \]

where \(X(n) \in \mathbb{C}^{K_1} \) are the unknown CM source signals, \(\hat{Y}(n) \in \mathbb{C}^{K_2} \), with \(K_2 \geq K_1 \), are the observed outputs and \(A(l) \in \mathbb{C}^{K_2 \times K_1} \), \(l = 0, \ldots, L-1 \) contain the unknown channel coefficients. We assume that it is possible to equalize the channel by means of a Finite Impulse Response (FIR) filter \(B(z) \):

\[\hat{X}(n) = \sum_{l=0}^{L-1} B(l) \hat{Y}(n-l), \]

in which \(B(l) \in \mathbb{C}^{K_1 \times K_2} \), \(l = 0, \ldots, L_e - 1 \). It is well-known that sources may only be recovered up to a permutation, phase shift and time delay.

In Section 2 we assume that channel and equalizer are paraunitary. This is the case when first a prewhitening has been carried out.

In Section 3 we consider a SISO channel and equalizer. Section 4 is a small note on blind deconvolution in the case of oversampled data. In Section 5 the performance of our algorithms is illustrated by means of some simulations. Section 6 is the conclusion.

On-line algorithms for blind deconvolution in digital communications often need long data blocks to converge (typically from 10,000 to 100,000 symbols). Off-line algorithms exhibit much shorter convergence times. However, techniques that exploit the statistical independence of the source signals may still require substantial sample sizes for the estimation of (higher-order) statistics.

2. PARAUNITARY FILTERS
In this section we assume that channel and equalizer are paraunitary due to a prewhitening. The transfer function can then be factorized as [14]

\[A[z] = Q_{K-1} \cdot Z[z] \cdot Q_{L-2} \cdots Z[z] \cdot Q_0, \]

where \(Q_l \in \mathbb{C}^{K \times K}, l = 0, \ldots, L - 1 \) are unitary and \(Z[z] \) is \((K \times K)\) diagonal

\[Z[z] = \begin{pmatrix} I_{K-1} & 0 \\ 0 & z^{-1} \end{pmatrix}, \]

with \(I_{K-1} \) the \((K-1) \times (K-1)\) identity matrix.

A special property of paraunitary filters is that they can be equalized by an FIR filter of the same length. The equalizing filter is also paraunitary. For \(A[z] \) given by Eq. (2), we obtain the equalizer

\[B[z] = Q_{L}' \cdot Z[z] \cdots Q_0' \cdot Z[z] \cdot Q_{L-1}', \]

with

\[Z[z] = \begin{pmatrix} z^{-1} I_{K-1} & 0 \\ 0 & 1 \end{pmatrix}. \]

This equalizer is usually estimated from the higher-order statistics of \(\hat{Y}(n) \), by claiming that the source signals are mutually statistically independent [3, 4, 12]. Here we will derive a new technique based on the CM property of the sources.

Let \(B \in \mathbb{C}^{L 	imes KT} \) be the concatenation of the matrices \(\{B(l)\} \).

Due to the paraunitary constraint, \(B \) is row-wise orthonormal [3]. Let us stack the vectors \(\hat{Y}(n), \hat{Y}(n-1), \ldots, \hat{Y}(n-L+1) \) in one big vector \(\hat{Y}(n) \in \mathbb{C}^{KL} \). Then Eq. (1) can be rewritten as

\[\hat{X}(n) = BY(n). \]

The algorithm presented in Section 2 only presupposes a whitening. The equalization of the paraunitary system is merely based on the algebraic structure induced by the CM property; higher-order statistics are not required. The SISO algorithm and the technique proposed in Section 4 are purely deterministic. The transmitted sequences do not have to be mutually statistically independent, nor independent identically distributed (i.i.d.). As a result, the algorithms can be used for small sample sizes (e.g. in the case of slow channel fading).

We use the following notation. \(^T \) denotes the transpose, \(^* \) the complex conjugate transpose, \(\otimes \) the Kronecker product. Scalars are denoted by lower-case letters (\(a, b, \ldots \)), vectors are written as capitals (\(A, B, \ldots \)) (italic shaped), matrices correspond to bold-face capitals (\(A, B, \ldots \)) and higher-order tensors (multi-way arrays) are written as calligraphic letters (\(\mathcal{A}, \mathcal{B}, \ldots \)). \(K, L \) and \(N \) are reserved to denote the upper bounds of indices \(k, l \) and \(n \).

The author holds a permanent research position with the French Centre National de la Recherche Scientifique; he also holds a honorary research position with the K.U.Leuven, Belgium. Part of this research was supported by the Research Council K.U.Leuven (GOA-MEFISTO-666), the Flemish Government (F.W.O. project G.0240.99, F.W.O. Research Communities IC-CoS and ANMMM) and the Belgian Federal Government (IUAP V-22). The scientific responsibility is assumed by the author.
Initially, we may work as in [15]. Let $B \in \mathbb{C}^{1 \times LK}$ be a row of B. The signal
\[\hat{s}(n) = BY(n) \] is unit-modulus if and only if
\[|\hat{s}(1)|^2 = BY(1) Y(1) H B^H = 1 \]
\[|\hat{s}(N)|^2 = BY(N) Y(N) H B^H = 1, \]
in which N is the number of samples $Y(n)$. Eq. (6) can be rewritten as
\[\begin{bmatrix} Y(1)^T \otimes Y(1)^H \\ Y(2)^T \otimes Y(2)^H \\ \vdots \\ Y(N)^T \otimes Y(N)^H \end{bmatrix} (B^T \otimes B^H) = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}. \] (7)
By multiplying both sides of Eq. (7) with a Householder or a discrete Fourier transform matrix, we obtain a set of equations of the form
\[\begin{bmatrix} \tilde{M} \\ M \end{bmatrix} (B^T \otimes B^H) = \begin{bmatrix} \sqrt{N} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \] (8)
in which $\tilde{M} \in \mathbb{C}^{1 \times (LK)^2}$ and $M \in \mathbb{C}^{(N-1) \times (LK)^2}$. The first equation is only a normalization constraint. Every row B_k of B leads to a vector in the kernel of M. Generically, for N big enough, the kernel of M is of dimension K. (Note that if $L' > L$ vectors are stacked in $Y(n)$, the kernel is of dimension $(L' - L + 1)K$ (number of possible time shifts induced by the equalizer \times number of source signals). In this way the equalizer length may be estimated.) Hence, the problem consists of (i) computing the kernel of M (by means of an SVD), and (ii) looking for vectors in the kernel subspace that have a Kronecker structure.

The fact that the kernel of M is spanned by the vectors \(B_k^T \otimes B_k^H \), can be reformulated as
\[F_1 = B^T \cdot D_1 \cdot B^* \]
\[\vdots \]
\[F_K = B^T \cdot D_K \cdot B^*, \] (9)
in which F_1, \ldots, F_K are \((LK \times LK)\) matrix representations of K basis vectors of the kernel, and in which the \((K \times K)\) matrices D_1, \ldots, D_K are diagonal. One can always choose kernel vectors that correspond to real-valued D_k, which leads to Hermitean matrices F_k. Consider a third-order tensor $\mathcal{F} \in \mathbb{C}^{L \times L \times L \times K}$, in which the matrices F_1, \ldots, F_K are stacked. Eq. (9) represents a Canonical Decomposition of \mathcal{F}, with orthonormality constraints on B [7, 13]. B may be found from this decomposition.

Now we will derive one particular computation scheme. We can reduce the dimensionality of the problem by noticing that B^T spans the column space of every matrix F_k. Hence, in the absence of noise, the column space of B^T can be determined as the subspace corresponding to the K dominant left singular vectors of the matrix $F = [F_1 \ldots F_K]$. In the presence of noise, this approach is (slightly) suboptimal. A technique for the computation of the best subspace in least-squares sense is explained in [5, 6]. Let the columns of $U \in \mathbb{C}^{LK \times K}$ form an orthonormal basis of this subspace. Then the remaining problem is of the form
\[G_1 = E \cdot D_1 \cdot E^H \]
\[\vdots \]
\[G_K = E \cdot D_K \cdot E^H, \] (10)
in which $G_k \in \mathbb{C}^{K \times K}$, $1 \leq k \leq K$, are defined by
\[G_k = U^H \cdot F_k \cdot U \]
and in which the unknown factor $E \in \mathbb{C}^{K \times K}$ equal to $U^H \cdot B^T$ is unitary. E may very efficiently be computed from (10) by means of the JADE algorithm [2].

Let us associate to U^T a filter $U^T(z)$ of which the matrix coefficients are the subsequent \((K \times K)\) submatrices of U^T. Note that the computation of U in fact reduced the equalization problem to the blind separation of an instantaneous linear mixture: after passing $Y(n)$ through $U^T(z)$, the remaining mixture is instantaneous since we have $B = E \cdot U^T \cdot U$.

3. THE SISO CASE

Contrary to paraunitary channels, SISO FIR channels cannot be exactly equalized by means of an FIR equalizer. In this section we will look for the optimal equalizer of a given length L.

Let $B \in \mathbb{C}^{1 \times L}$ represent an (approximate) equalizer of a channel with transfer function $a(z)$. Subsequent observations are stacked in a vector $Y(n) \in \mathbb{C}^L$. We compute a matrix M in the same way as in the previous section. We now have to determine the minimum of the cost function
\[f(B) = \| M \cdot (B^T \otimes B^H) \|^2, \] (11)
under the normalization constraint $\|B\| = 1$. Let the singular values of M be given by σ_p and let the right singular vectors be stacked in $(L \times L)$ matrices V_p, $1 \leq p \leq L^2$. Then f is given by
\[f(B) = \sum_{ijkl} \sigma_i^2 \delta_{ij} \delta_{kl} - \sum_{ijkl} \sigma_i^2 (V_p)_{ij} (V_p)_{kl}^* b_i b_j^* b_k b_l^*. \] (12)

Minimization of this cost function is equivalent to maximization of
\[g(B) = \sigma_i^2 - \sum_{ijkl} \sigma_i^2 (V_p)_{ij} (V_p)_{kl}^* b_i b_j^* b_k b_l^*. \] (13)

This function is nonnegative because B is unit-norm and \(\{ V_p \} \) correspond to orthonormal vectors. Let $\mathcal{F} \in \mathbb{C}^{L \times L \times L \times L}$ be the supersymmetric tensor with entries
\[t_{ijkl} = \sigma_i^2 \delta_{ij} \delta_{kl} - \sum_p \sigma_i^2 (V_p)_{ij} (V_p)_{kl}^* \lambda_{ij}, \]
in which δ_{ij} is the Kronecker delta ($\delta_{ij} = 1$ if $i = j = s$ and 0 otherwise). Then we have
\[g(B) = \sum_{ijkl} t_{ijkl} b_i b_j^* b_k b_l^*. \] (14)

This means that maximization of $g(B)$ corresponds to finding the best supersymmetric rank-1 approximation of \mathcal{F}. Indeed, if we want to minimize
\[h(\lambda, B) = \| \mathcal{F} - \lambda B^T \circ B^H \| \| B^T \|^2 = \sum_{ijkl} |t_{ijkl} - \lambda b_i b_j^* b_k b_l^*| ^2 \] over $\lambda \in \mathbb{R}$ and unit-norm B, then the optimum corresponds to the optimal equalizer and λ_{opt} is the global maximum of g. We refer to [5, 9, 19] for background and algorithms.
4. OVERSAMPLING

A common way to ensure that an FIR equalizer exists, is temporal and/or spatial oversampling [11, 16]. Let \(K_2 \) be the product of the number of antennas and the temporal oversampling rate. Then we suppose that \(K_2 > K_1 \).

A difficulty is that equalizers are not unique, like in Section 2. Let \(\alpha \) be the smallest integer such that \(K_2(\alpha + 1) \geq (L_s + \alpha)K_1 \). Then \(L_s + \alpha \) equalizers may be obtained for each source signal, each containing \(K_2(\alpha + 1) \) coefficients. These equalizers result in different time shifts. In [17] this constraint is combined with the CM constraint. This leads to a set of \(K_2 \) of dimension \((K_2(\alpha + 1)(L_s + \alpha) \times K_2(\alpha + 1)(L_s + \alpha)) \), satisfying

\[
F_1 = B^T \cdot D_1 \cdot B^* \\
\vdots \\
F_{K_2} = B^T \cdot D_{K_2} \cdot B^*,
\]

in which \(\{D_k\} = \{K_1 \times K_1\} \) real diagonal and in which \(B \in \mathbb{C}^{K_1 \times K_2(\alpha + 1)(L_s + \alpha)} \). In a row of \(B \) the different equalizers for one source are stacked. Eq. (15) can again be considered as the Canonical Decomposition of the third-order tensor in which the matrices \(\{F_k\} \) are stacked. The difference with Eq. (9) is that now matrix \(B \) is not subject to orthonormality constraints.

To reduce the computational complexity, we propose to work in analogy with Section 2. First we compute the singular vectors that are retained. Although the matrix \(F \) is now not row-wise orthonormal anymore, we may still proceed as in Section 2. The only difference is that the factor \(U \) in Eq. (10) is square non-unitary, like in Section 4.

In our simulation, channel and equalizer are \((2 \times 2)\) paraunitary of length \(L = 4 \). The matrices \(Q_i \) in Eq. (2) are of the form

\[
Q_i = \begin{pmatrix}
\cos \theta_i & \sin \theta_i e^{j \phi_i} \\
-\sin \theta_i e^{-j \phi_i} & \cos \theta_i
\end{pmatrix},
\]

in which the parameters \(\theta_i \) and \(\phi_i \), for \(0 \leq l \leq L - 1 \), are drawn from a uniform distribution over \([0, 2\pi)\). Sources are QAM4. A data block consists of 200 samples. The channel outputs are contaminated by i.i.d. zero-mean Gaussian noise of variance \(\sigma^2 \). The experiment consists of 300 Monte Carlo runs. In each run, new realizations of channel, sources and noise are generated. The average Symbol Error Rate (SER) is plotted as a function of the Signal-to-Noise Ratio (SNR) in Fig. 1. All symbols were estimated correctly when the SNR \(\geq 17.5 \) dB. Fig. 2 shows in how many cases an extended kernel was used.

A second simulation concerns the SISO case. The channel is extended kernel was used (first experiment).

Figure 1: SER as a function of SNR in the first experiment.

Figure 2: Number of cases in which a kernel of dimension \(d > 2 \) was used (first experiment).

Symbol Error Rate (SER) is plotted as a function of the Signal-to-Noise Ratio (SNR) in Fig. 1. All symbols were estimated correctly when the SNR \(\geq 17.5 \) dB. Fig. 2 shows in how many cases an extended kernel was used.

A second simulation concerns the SISO case. The channel is extended kernel was used (first experiment).

A second simulation concerns the SISO case. The channel is extended kernel was used (first experiment).

Next, we consider the computation scheme proposed in Section 4. We consider the case where 2 source signals are mixed by a channel of length \(L = 2 \). Furthermore, \(K_2 = 4 \). The channel coefficients are drawn from a unit-variance zero-mean complex Gaussian distribution. Sources are QAM4. A data block consists of only...
In our simulation, the dimension number κ equalization task much more difficult. In our simulation, the computation of the SNR, is plotted in Fig. 4. The corresponding SER was over 30%. The percentage of successful runs, as a function of SNR, is plotted in Fig. 5. The estimation of the equalizer was considered as a failure if the SER was over 30%. The percentage of successful runs, as a function of SNR, is plotted in Fig. 5. The corresponding SER values are shown in Fig. 5.

Of course, when the channel is ill-conditioned, this makes the equalization task much more difficult. In our simulation, the condition number κ varied between 2.3 and 64. Figs. 4 and 5 show curves for the overall average, for $\kappa \leq 15$ (253 runs) and for $\kappa \leq 10$ (207 runs).

6. CONCLUSION

In this paper we have derived algebraic algorithms for the blind deconvolution of CM sources. Data blocks may be short. The techniques can also be used to extract CM sources from mixtures that also contain non-CM components.

REFERENCES