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ABSTRACT 

 
It is generally recognized that consonants are more critical 
than vowels to speech intelligibility, but we suggest that 
important information is contained in transient speech 
components, rather than the quasi-steady-state components 
of both consonants and vowels. Fixed-frequency filters 
cannot uniquely separate transients from the more steady-
state vowel formants and consonant hubs, even though the 
former are predominately low frequency and the latter, high 
frequency. To study the relative speech intelligibility of the 
transient versus steady-state components, we employed an 
algorithm based on time-frequency analysis to extract quasi-
steady-state energy from the speech signal, leaving a 
residual signal of predominantly transient components. 
Psychometric functions were measured for speech 
recognition of processed and unprocessed monosyllabic 
words. The transient components were found to account for 
approximately 2% of the energy of the original speech, yet 
were nearly equally intelligible. As hypothesized, the quasi-
steady-state components contained much greater energy 
while providing significantly less intelligibility. 
 
 

1. INTRODUCTION 
 

Most human sensory systems are sensitive to abrupt 
changes of stimuli. We suggest that the auditory system 
shows the same characteristics and that it is particularly 
sensitive to time-varying frequency edges. Most consonants 
are predominantly brief transients, but some include quasi-
steady components, which are also the dominant 
characteristic of vowels. Since the onset/offset of speech 
sounds is inherently transient and the consonant-vowel 
interface is naturally dynamic, the speech signal is replete 
with transient events. Conventional vowel-consonant 
classification and concepts of spectral make-up potentially 
neglect still other transient components. For example, since 
the articulators cannot move instantly from one position to 
the other, initial portions of vowel formants show brief 
frequency shifts that differ among possible CV 

combinations [1]. Consequently, the transient energy is 
expressed across the speech frequency range. While the 
transient components contain a small amount of the total 
speech energy, compared to quasi-steady state portions of 
both vowels and consonants, they may be critical to the 
perception of speech by humans and to machine speech 
recognition. 

Traditional methods of studying the auditory system 
have emphasized frequency-domain techniques, a 
perspective that also has dominated concepts of speech 
intelligibility. While it is generally recognized that voicing 
and steady vowel sounds are largely low frequency and that 
consonants are dominated by higher frequencies, no single 
cutoff frequency uniquely separates them. Transition 
information is even more difficult to isolate using fixed-
frequency filters as this information is inherently dynamic 
and can be rather broad band. The purpose of this project 
was to develop an algorithm to emphasize transient 
components in speech in order to investigate their role in 
speech intelligibility. 

Many investigators have addressed the problem of 
identifying the start and end of phonemes or word segments 
for automated speech recognition, but only a few studies 
have focused specifically on transient components in 
speech. Yegnanarayana et al. proposed an iterative 
algorithm for decomposition of excitation signals into 
periodic and aperiodic components [2]. Their purpose was 
to improve the performance of formant synthesis. Zhu and 
Alwan showed that variable frame-rate speech processing 
can improve the performance of automated recognition of 
noisy speech [3]. Frame size was constant, but the overlap 
(rate) was increased when speech models showed that the 
speech was changing rapidly. Yu and Chan characterized 
transitional behavior by the onset time and growth rate of 
each low frequency harmonic component of the transient 
speech segment [4]. Daudet and Torresani described a 
method to estimate tonal, transient, and stochastic 
components in speech using a modulated discrete cosine 
transform and a wavelet transform as a step to improve 
speech coding [5]. Although these researchers investigated 
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the detection of speech transient information, they did not 
address the relation of the transient information to speech 
intelligibility. 

Our approach to emphasizing transient information in 
speech was to use time-varying bandpass filters (TVBF) to 
remove predominately steady-state energy in the speech 
signal. The filters were based on an algorithm described by 
Rao and Kumaresan, who developed a method to represent 
a speech signal as a product of components [6],[7]. Section 
2 of the paper summarizes the filtering method and explains 
how the center frequency and bandwidth of the bandpass 
filters were determined. Psychometric methods to evaluate 
the intelligibility of transient and original speech are also 
described (a surprisingly rare design in the research 
literature). Results presented in Section 3 include relative 
energy and intelligibility measures of the transient 
components (as operationally defined) obtained using 
mono-syllable words. The implications of the findings are 
discussed in Section 4, as the results suggest an approach to 
an efficacious basis for enhancement of speech 
intelligibility. 
 

2. METHODS 
 

Digital speech signals were down-sampled from 44100 
Hz. to 11025 Hz. and then highpass filtered at 700 Hz. The 
low frequency part of the spectrum was removed for 
reasons discussed later in Methods. This region mostly 
represents voicing and occasionally some first-vowel format 
information, whereas most of the intelligibility-bearing 
spectrum of vowels and nearly all consonant spectral power 
falls above approximately 500 Hz. [8]. Since the interest in 
this study was in speech intelligibility and the highpass 
filtered speech was as intelligible as the original speech 
(verified by our experimental measurements of 
intelligibility), we used the highpass filtered speech as the 
reference speech signal.  
 We assume that the reference speech is a superposition 
of a quasi-steady-state (QSS) and a transient component, 
x(t) = xqss(t) + xtran(t), where x(t), xqss(t), and xtran(t) are the 
reference, quasi-steady-state, and transient components, 
respectively. The QSS component is the component that the 
filter algorithm is intended to remove, and we expect it to 
include most of the energy in vowels and hubs of 
consonants. The transient component is the signal that 
remains after xqss(t) have been removed. 
 Three time-varying bandpass filters (TVBF) were used 
to extract quasi-steady-state energy from the reference 
speech. [6],[7] Each TVBF was implemented as an FIR 
filter of order 150 with center frequency and bandwidth 
determined from the output of a tracking filter, which 
included an all-zero filter (AZF) followed by a single-pole 
dynamic tracking filter (DTF). The center frequency of each 
DTF tracked one spectral band of the speech signal. The 
zeros of the corresponding AZF were set to the frequencies 
being tracked by the other DTFs to minimize the energy at 

those frequencies appearing at the DTF input. The pole 
location of the DTF was adjusted by the estimated 
frequency of the output of that DTF. Then, frequency and 
amplitude of the tracked component (output of the DTF) 
were estimated using linear prediction in the spectral 
domain (LPSD) [6]. 

The center frequency of the DTF output determined the 
TVBF center frequency. The bandwidth of the TVBF was 
calculated from the speech+noise-to-noise ratio (SNNR) 
using  
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where n(t) is a reference noise signal recorded from a silent 
part of speech, s(t) is the speech+noise signal (AM 
information from LPSD), B is the maximum bandwidth, and 
θ  is the filter activation threshold [7]. 

If the amplitude of a tracked component is large, the 
corresponding DTF has a wide bandwidth, and if the 
amplitude is small, the filter has a narrow bandwidth. If the 
SNNR falls in the noise masking region (SNNR <θ ), the 
bandwidth is set to zero to avoid excessive noise energy in 
the filter output. For larger SNNR, the bandwidth increases 
asymtotically from 0 to the maximum value. 

In pilot studies with unfiltered speech, the adaptation of 
the TVBF was found to be dominated by low-frequency 
energy. With highpass filtering at 700 Hz., the TVBF were 
more effective in extracting quasi-steady-state energy from 
higher frequencies. As stated earlier, the low frequencies 
have little influence on intelligibility, and their removal did 
not affect the intelligibility of the reference speech. The 
QSS component was obtained as the sum of the outputs of 
the three TVBF, and the transient component was obtained 
by subtracting the QSS component from the reference 
speech signal.  

Each filter is characterized by two parameters: the 
maximum bandwidth B and the activation threshold θ, 
which is the speech-power-to-noise power at which the filter 
is activated. The maximum bandwidth must be large enough 
to capture most of the energy in the spectral band being 
tracked but small enough to be restricted to a single band. 
The activation threshold is based on the ratio of speech to 
noise power in a spectral band. It must be small enough to 
assure that the filter is active during a quasi-steady-state 
sound and high enough to not be active during speech 
transitions or noise. 
 In order to determine the relative intelligibility of the 
QSS and transient components compared to the original 
speech, phonetically-balanced CVC words spoken by 
several male and female speakers (from CDROM CD101R2 
from AUDITEC of St. Louis) were used to measure 
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psychometric functions (word recognition vs. stimulus 
level), providing information on the effective sensation 
level of the different speech signals tested and the maximum 
word recognition score (PBmax) for them. Three hundred 
monosyllable words were divided into 30 sets of 10 words. 
Each list was processed to generate original, reference 
(highpass filtered), QSS, and transient component versions. 

Figure 1. Waveforms of speech signal “pike” spoken by a female 
speaker: (a) reference speech; (b) QSS component; (c) transient 
component. 
 
 Different sets of words were presented at each of 
several speech intensities to five young, normal hearing 
subjects (a robust number by psychoacoustic research 
standards for such labor-intensive studies). The number of 
recognition errors was scored by skilled examiners under 
supervision of coauthor JDD, a certified clinical 
audiologist. Different lists were used to obtain growth 
functions for original speech, reference speech, QSS, and 
transient components to minimize learning or anticipation 
effects. The test spanned intensity levels from hearing 
threshold to the maximum recognition level. A maximum 
recognition score of less than 100% was recorded only if a 
higher speech amplitude was tested and yielded a 
recognition score equal to or less than the highest score at a 
lower level.  
 The Friedman test was used to perform a non-
parametric analysis of variance on the maximum 
recognition scores for the different components, and post-
hoc Wilcoxon’s signed-rank tests were used to identify 
which pairs of scores were different. Results reported here 
were obtained with words presented in quiet, but essentially 
the same results were obtained for words presented with 
various types and intensities of background noise. 
  

3. RESULTS 
 

Our goal was to remove as much energy from the 
highpass-filtered signal as possible with minimal effect on 
intelligibility. Pilot tests with the preliminary word set were 

used to determine the maximum bandwidths and bandwidth 
thresholds of the TVBF that most effectively removed 
signal energy from the reference speech. The bandwidth 
parameters were systemically varied between 700 to 1100 
Hz and the bandwidth threshold between 5 to 18 dB, and 
intelligibility of the transient component was assessed 
qualitatively. A bandwidth threshold of 15 dB and 
maximum bandwidth of 900 Hz. provided the lowest energy 
in the resulting transient components with good 
intelligibility, and those parameters were used for the results 
presented here. 

 
Figure 2. Time-frequency plots of speech components in Fig. 1: 
(a) reference speech; (b) QSS component; (c) transient 
component. 

 
An example of decomposition of a speech signal is 

illustrated in Fig. 1 and 2. A monosyllable word (“pike”, 
represented phonetically as /paIk/) spoken by a female 
speaker was decomposed into QSS and transient 
components as described above. The reference, QSS, and 
transient components are shown in Fig. 1. The energy in the 
QSS component is 87% of the energy in the reference 
speech. The QSS component is dominated by the vowel /aI/ 
in “pike”, from approximately 0.05 to 0.17 sec. The 
remaining 13% of the energy is in the transient component, 
which includes energy associated with the noise burst 
accompanying the articulatory release of /p/ from 
approximately 0.01 to 0.05 sec., and the articulatory release 
of /k/ at around 0.38 sec. 

The sound of the QSS component was very garbled and 
difficult to identify in isolation as the word “pike”. On the 
contrary, the transient component was perceptually similar 
to the reference speech, despite having much less energy. 

To help visualize the effects of the TVBF, time-
frequency plots of the signal spectra were calculated using a 
55 msec. Hamming window. Figure 2 demonstrates that 
most of the sustained vowel energy is included in the QSS 
component and that the transient component primarily 
includes energy at the beginning of the dominant 
components. In particular, the transient component includes 
spectral characteristics of both the /p/ and /k/ releases, as 
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well as formant transitions from the /p/ release into the 
vowel /aI/.  The location of the spectral energy in these 
transients contributes to the perception of place of 
articulation for both the consonants and the vowel. 

When this word was processed with three fixed 
bandwidth filters (700, 700, and 700 Hz. bandwidths, 
respectively, to be similar to the bandwidths that were 
observed in the TVBFs), the sum of the filter outputs 
(corresponding to the QSS component using the TVBF) 
contained 95% of the energy in the highpass filtered speech, 
and it was highly intelligible. The remaining 5% of the 
signal energy was in the residual component, and it was 
essentially unintelligible, illustrating that the results 
obtained depend on the use of time-varying rather than 
fixed filters. 

 
TABLE I 

Mean of energy in the QSS and transient components of mono- 
and two-syllable words relative to energy in the reference speech 
and in the original speech.  Standard deviation in parenthesis. 

 QSS Transient 
% of reference speech 82% (6.7) 18% (6.7) 
% of original speech 12% (5.5) 2% (0.9) 

 
These results were typical of all of the words tested. 

Relative energy in the QSS and transient components for 
the words used to measure the recognition growth functions 
are summarized in Table I. As expected, most of the speech 
energy was in the low frequency range that was removed by 
highpass filtering, and most of the remaining energy was in 
the QSS component. The energy in the reference speech 
ranged from 5% to 30% of the energy in the original 
speech, with an average of 14%. The energy in the transient 
component ranged from 6% to 43% of the reference speech, 
with a mean of 18%. The QSS component had loudness 
approximately equal to the reference speech, but the 
transient component sounded less loud, as would be 
expected due to its lower energy.  

The maximum recognition scores of words in quiet for 
the original and reference speech were 100 for all subjects 
tested.  For the transient component, the average score was 
92, and for the QSS component, it was 54. The Friedman 
test was significant (p = 0.014), and the Wilcoxon signed-
ranks test showed that only pairs involving QSS were 
significantly different (p = 0.042). 
 

4. DISCUSSION 
 

In order to study the role of transient speech 
components on speech intelligibility, we implemented a 
time-varing bandpass filter to extract quasi-steady-state 
energy from a speech signal. We refer to the residual signal 
with low frequency and quasi-steady-state energy removed 
as the transient component of speech, and we suggest that it 
includes transitions between vowel formants and hubs of 
consonants. The transient components have approximately 
2% of the energy of the original speech but psychometric 

measures of maximum word intelligibility showed almost 
equal intelligibility. This intelligibility includes the ability 
to identify the speaker as well as to distinguish the word 
being spoken. The QSS components had much greater 
energy but were significantly less intelligible. They appear 
to correspond to speech energy that characterizes sustained 
vowel sounds and some consonant hubs.  

These results suggest that transient components are 
critical to speech intelligibility, and emphasis of the 
transient components may provide a basis to enhance 
intelligibility, especially in noisy conditions. The transients 
are expected to be distributed across time and frequency, 
requiring time-frequency techniques to identify them. The 
algorithm described here provides one method of extracting 
predominately transient speech components, and 
investigations into its utility in enhancing speech 
intelligibility are currently underway in our laboratory. 
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