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ABSTRACT 
In this paper, an Adaptive Median Constant False Alarm Rate 
(AMCFAR) and multi-frame post detection integration algorithm is 
proposed for effective real time automatic target detection of boat-
generated acoustic signals, in which, an observation space is cre-
ated by sampling and dividing input analog acoustic signal into 
multiple frames and each frame is transformed into the frequency 
domain. In the created observation space, a Median Constant False 
Alarm Rate (MCFAR) and post detection integration algorithms 
have been proposed for an effective automatic target detection of 
boat generated acoustic signals, in which a low constant false alarm 
rate is kept with relative high detection rate. The proposed algo-
rithm has been tested on several real acoustic signals from hydro-
phone sensors, and statistical analysis and experimental results 
showed it able to provide a very low false alarm rate and a rela-
tively high detection rate in all cases. 

1. INTRODUCTION  

With the increase of unauthorized arrivals, drug smugglers, 
illegal fishing and a range of other border threatens, border 
protection becomes more and more important to the interna-
tional community. Just in the case of Australia, in order to 
allow the Coast-Watch service to maintain its intensive pro-
gram in the north and north-west, while still effectively 
managing other areas of the Australia’s coastline, flying 
hours have increased by 1600 per annum, with a severe in-
crease in costs for the Australian Government. Therefore, an 
alarm system which can detect and report the existence of 
alien boats is becoming of increasing importance for the 
authority. The authors are targeting the applications on these 
aspects by successfully developing a very effective acoustic 
signal detection algorithm, which can be used for detection 
and monitoring of illegal activities on the wide range of 
coastlines by detecting any unexpected boats by means of 
acoustic techniques.  
This paper is devoted to theoretic algorithms development 
and experimental research of automatic target detection of 
acoustic signals, especially for boat (engine and propeller)-
generated signals from hydrophone ([1], [2]). In this paper, 
an observation space is created by dividing input acoustic 
signals into multiple frames, with each frame sampled and 
transformed into the frequency domain. Then, an Adaptive 
Median Constant False Alarm Rate (AMCFAR) algorithm is 
proposed for automatic target detection of boat-generated 
acoustic signals in each frame to provide a low constant 
false alarm rate with relatively high detection rate. Finally, a 
multiple-frame integration algorithm is used for the purpose 

of increasing the signal-to-noise ratio (SNR) and adjusting 
observation for suitable target signals. The proposed algo-
rithms have been tested on acoustic signals from real boats 
received and recorded from hydrophone, and their effective-
ness proved. 

2. MULTI-FRAME ACOUSTIC SIGNAL 
PROCESSING AND DETECTION ALGORITHM 

IN THE FREQUENCY DOMAIN  

The Multi-Frame Acoustic Signal Processing and Detection 
Algorithms proposed in this paper are structured based on 
the Neyman-Pearson (NP) criterion ([3],[4]). This criterion 
is widely adopted for target detection application in either 
sonar or radar systems. The observation space of the detec-
tor is shown in Fig. 1. 

Figure 1 Observation space for the acoustic signal Neyman-Pearson 
detector 
It can be proven that under the Neyman-Pearson criterion, 
the acoustic signal in the frequency domain needs to be 
normalized by the average noise power in the optimum de-
tector [4]. Furthermore a multi-frame integration is carried 
out to increase the signal-to-noise ratio (SNR). The basic 
ideas of the Neyman-Pearson detector are to reduce the false 
alarm rate and maximize the target detection rate.  
In our work, acoustic signals from hydrophone are sampled 
and converted into digital signals based on the Nyquist 
Sampling Theorem (Criterion) ([5], [6]). In our experiments, 
we used a sampling rate of 2048 Hz, since the maximum 
frequency we are interested in is 1024 Hz. Then, the digital 
signal converted from the analog input signal is divided into 
frames of T. With T chosen as 0.5 seconds, the data process-
ing period in digital format is N = 1024. 



The digital signals are then transformed into the frequency 
domain by using FFT (Fast Fourier transform). Since the 
data processing period is 1024, we chose the same length, 
1024 points, as FFT length. Some frame pre-processing in 
the frequency domain is also necessary before detection 
including DC removal and spectrum frame vector normali-
zation. 

 

Figure 2 Multi-Frame Acoustic Signal Processing and Detection Algo-
rithm 

In order to deal with various input signal strength and make 
the whole automatic target detection robust, single-frame 
spectrum magnitude normalization is performed in the fre-
quency domain. At this stage, each element in the frame 
vector is divided by the magnitude of the vector (geometric 
length). After normalization, a magnitude scaling factor of 
40 dB (100 times) is used to give the signal a more practical 
range. 
The single frame spectrum vector normalization is described 
as follows 
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in which i is the frame index, L the number of frequency 
components and kf the scaling factor. 
In typical sonar systems, signal detection is performed by 
thresholding such a normalized signal by a constant, ad-hoc 
threshold. In our approach, instead, an Adaptive Median 
CFAR algorithm is used to calculate the Constant False 
Alarm threshold in a single frame, in which the threshold for 
each frequency bin is adapted by the median frequency 
value over a sliding window. This is performed in two steps: 
in the first, the median threshold is subtracted from the nor-
malized signal. In the second, the input signal spectrum is 
compared with a constant CFAR threshold, ∆, and if the 

difference is bigger, the bin is reported as the target fre-
quency. The ∆

1  parameter is called sensitivity, as the bigger 
the ∆ is, the less sensitive our detection system is on weak 
signals. Since the CFAR threshold is adapted to the applica-
tion and the neighborhood noise, it will keep our automatic 
target detection system at a very low and constant false 
alarm rate. In the following, the AMCFAR algorithm is de-
scribed in details. 
The Median Constant False Alarm Rate (Median CFAR) 
threshold vector, 
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is calculated by feeding norm
iX  into a Median filter (whose 

properties and size will be discussed in the next section) as 
follows: 
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                                                                                                                   (3) 
The Median filter size is ),12( +k with 3,2,1=k . In order to 
deal with the boundary case, both the input signal spectrum 
vector and the threshold vector are treated as wrapped pe-
riod signals. The single-frame detection is based on the 
comparison of the difference between vectors norm

iX  
and threshold

iX  against a threshold, with the output being a 
binary vector: 
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The ijy values equal to 1 are the detected frequencies based 

on single-frame detection. In addition, the integration of 
single frame detection results over time (i.e. over a number 
of frames) was used here to increase the target detection 
probability. As boat-generated signals typically last in the 
order of tens of seconds, this approach can significantly im-
prove the detection rate. A typical value of integration time 
for sonar buoy-acquired signals is about 15 seconds, which 
corresponds to 30 frames in our testing system. 
The ‘Integrated Detection vector’ is defined as: 
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Where the M is the number of frames and the p  vector is a 
description of the number of times single-frame detection 
occurred at each frequency bin over the integration window, 
and final detection is based on the distribution function. In 
order to make the performance of the detection system more 
robust, especially for weak signals, the ‘Integrated Detection 
Vector’ is eventually normalized by its geometric magnitude 
( pp / ).  

3. RELATED WORKS AND DISCUSSION  

In this paper an Adaptive Median CFAR algorithm is pro-
posed, in which acoustic target signals are detected with a 



low false alarm and relative high detection rates in the fre-
quency domain. The input acoustic signals are transformed 
into the frequency domain by using FFT first. Then, the tar-
get generated frequency component will be detected. The 
basic idea of this algorithm is that of using, for each fre-
quency bin, different, adaptive CFAR (Constant False Alarm 
Rate) thresholds [8] rather than a single, constant threshold 
(which is often the case in acoustic systems). First, based on 
the Neyman-Pearson criterion, the threshold of each fre-
quency bin is computed based on the surrounding back-
ground noise. The higher the background noise, the higher 
the threshold is set. Moreover, our algorithm uses a median 
filter window centered about each frequency bin to adapt the 
threshold value. To the best of our knowledge, while this 
idea is often used in radar system to obtain lower false alarm 
rate with relatively higher target detection rate, it is applied 
here for the first time to sonar-generated acoustic signals.  
Since the Median Filter is good at removing high frequency 
spike noise, it is a very effective way to calculate the thresh-
old vector independently of specific signals. As such, the 
Adaptive Median CFAR algorithm proves superior to other 
common approaches such as constant thresholds or average-
based thresholds. The major advantage of the Median filter 
is in its ability to remove interferences such as strong signal 
or noise spikes without affecting the sharpness of edges (re-
taining sharp edges after filtering). Conversely, with an Av-
eraging Low Pass Filter, which is equivalent to the Average 
CFAR algorithm, sharp edges will be blurred after filtering. 
Moreover, every bin in the averaging window will affect the 
threshold value, especially when the signal or a noise spike 
is strong. Evidence of the superiority of the median filter 
with respect to average filters for signal detection can also 
be found in [7]. 
The size of Median Filter window is an odd number, which 
can be )12(,,7,5,3 +kL . From our experiments, a window size 
of 5 has been proved to be the most appropriate. 
The Adaptive Median Filter Constant False Alarm Rate 
(Adaptive Median CFAR) algorithm can be used to detect 
targets with relatively high detection rate while maintaining 
a low and constant false alarm rate. In addition, as boat-
generated signals have relatively long duration, we have 
added a time-integration step over multiple frames which 
significantly further improves the detection rate. Although 
this step introduces a delay in early detection of incoming 
boats in the order of 15 seconds, this is completely negligi-
ble with respect to the typical travelling speeds of monitored 
boats. The overall procedure is computationally light, thus 
allowing us cost-effective real-time implementation even on 
systems with limited computational power and size con-
straints such as on-board embedded computers. 

4. EXPERIMENTAL RESULTS WITH THE 
ADAPTIVE MEDIAN CFAR AND MULTI-FRAME 

INTEGRATION ALGORITHM  

The test signals are provided by Soncom PTY LTD from 
“C-Buoy/Off-Buoy Processor Sea Trials’ at Low Islets, Aus-
tralia (16.3833° S, 145.5667° E) on 17 June 2002. The pro-
posed Adaptive Median CFAR and Multi-Frame Integration 

Algorithm has been successfully tested on many such sig-
nals. In the following, we provide results for signals called 
“Ferry” and “Reef Heron”for reference. 

4.1 “FERRY” BOAT SIGNAL TEST 
Fig. 3 (a) shows us that the “Ferry” boat signal has a pretty 
wide frequency band, which spreads between about 60 to 
450 Hz, with the main frequency component at about 440 
Hz and the strength of these frequency components between 
10 to 25 dB. Fig. 3 (b) shows us the Median CFAR thresh-
old image of Fig. 3 (a) in which we can see that the higher 
the neighboring values, the higher the threshold sets, and 
that threshold values are between 5 to 15 dB. Fig. 3 (c) 
shows us the detected target frequency components, in 
which we can see that the main frequency components 
around 440 Hz are successfully detected and some other 
frequency components between 60 to 450 Hz are also suc-
cessfully detected. 

 

 
Figure 3 Multiple Frame Target Frequency Detection Integration Re-
sults of “Ferry” by using the proposed Adaptive Median CFAR Algo-
rithm with window size = 5. 

Fig. 3 (d) shows us the time-integrated detected target fre-
quency components of Fig. 3 (c), in which we can see that 
the number of times the two biggest frequency components 
(around 440 and 70 Hz) were detected are 55% (12/22) and 
32% (7/22). These two main frequency components are fi-
nally successfully detected by vector (distribution) normali-
zation and final thresholding, and their detected frequencies 
are 71.06 Hz and 439.28 Hz. In Fig. 3 (d), we can also see 
that there are some frequency components between 60 and 
450 Hz which were detected a relatively lower number of 
times; hence, they did not cross the final threshold after dis-
tribution normalization.  

4.2 “REEF HERON2” BOAT SIGNAL TEST 
The proposed Adaptive Median CFAR and Multi-Frame 
Integration Algorithms have also been tested on “Reef 



Heron2’” boat signal, and the test results of multiple frames 
of the ‘Reef Heron2’ test case are shown in Fig. 4. 

 

 
Figure 4 Multiple Frame Target Frequency Detection Integration Re-

sults of “Reef Heron2” by Using the Proposed Median CFAR Algorithm 
with Window Size of 5. 

Fig. 4 (a) shows us that the “Reef Heron2” boat signal has 
two main frequency components which are located around 
480 and 740 Hz, and there are some unknown sea clutter 
(noise) frequency components that are around 800 Hz, and 
the strength of these frequency components are between 30 
to 50 dB. Fig. 4 (b) shows us that Adaptive Median CFAR 
threshold image of Fig. 4 (a), and threshold image strength 
values are between 10 to 25 dB. Fig. 4 (c) shows us that the 
detected target frequency components are at around 480 and 
740 Hz, and some other sea clutter frequency components 
did not cross the thresholds, so some false detections are 
avoided. Fig. 4 (d) shows us the integrated detected target 
frequency components of Fig. 4 (c), in which we can see 
that the detection rates of the biggest frequency component 
(around 680 Hz) is 65%, and this main frequency compo-
nent was finally successfully detected by vector (distribu-
tion) normalization and final thresholding, and detected fre-
quencies are 478.04Hz and 480.19 Hz. In Fig.4 (d), we can 
also see that the second biggest frequency component 
around 740 Hz,  for which it’s the detection rate is relatively 
lower, did not cross the final threshold after distribution 
normalization (under the 50% final detection threshold). 

5. CONCLUSION  

In this paper, an Adaptive Median Constant False Alarm 
Rate (AMCFAR) algorithm with post detection integration 
has been proposed based on the Neyman-Pearson criterion 
for effective automatic target detection of boat-generated 
acoustic signals, in which a low constant false alarm rate is 
kept with relatively high detection rate. The proposed algo-

rithm has been tested on many real acoustic signals recorded 
from hydrophone at a site on the Australian coastline. The 
statistical analysis and experimental results showed that the 
proposed algorithm has kept a very low false alarm rate and 
relatively high detection rate. 
The following conclusions can also be drawn: 
1) The proposed Adaptive Median CFAR algorithm is 

used to detect target frequency component from a single 
frame, keeping our automatic target detection system at 
low and constant false alarm rate. This algorithm 
proved especially good for detecting LOFAR target fre-
quency components. 

2) A magnitude normalization (in the frequency domain) is 
used to keep our automatic detector more robust to 
noise and spurious frequencies. 

3) With the default sensitivity value, most target frequency 
components are correctly detected. Further decreasing 
the sensitivity value makes the false detection rate 
(alarm rate) lower, but at the same time less target fre-
quency components will be detected. 

4) The integration of single frame detected targets makes 
detection significantly more robust. For example, with 
the integration of 20 frames, the possibility of correct 
target detection increases dramatically. 

5) In order to deal with various kinds of detected targets 
situation and increase the probability of target detection,  
“Integrated Detection Vector” normalization ( pp / ) is 
used.  

6) The boat-generated frequencies can be detected with high 
accuracy. In the experiment reported in this paper, the de-
tected boat-generated frequencies of ‘Ferry’ and ‘Reef 
Heron2’ are very close to the “ground truth”. 
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