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ABSTRACT*) 
This paper presents an alternative factorization for 8-channel 
general paraunitary filter bank. The utilization of quaternion 
multiplications leads to a lattice structure being lossless regardless 
of coefficient quantization. Other advantages are reduced memory 
requirements and good suitability for FPGA and VLSI 
implementations. The shown decompositions of 8 x 8 orthogonal 
matrices can find other applications unrelated to filter banks. 

1. INTRODUCTION 
Paraunitary filter banks (PUFBs) [1] are very important among all 
subband processing systems, because they are the basis for 
orthogonal M-band wavelets. The most evident area of their 
application is image coding. So, intensive research effort devoted 
to them is not surprising. 

The commonly used approach to the design of PUFBs exploits 
the lattice structures based on Givens rotations [2]. An equivalent 
method, invented subsequently, utilizes Householder reflections and 
dyadic-based building blocks [1]. Both approaches are an effective 
design tool but their practical utilization in fixed-point 
computational platforms is not so easy because the abovementioned 
building blocks lose their orthogonality under coefficient 
quantization [3], and the compensation of the related distortions is 
not trivial. The only robust approach to obtain a perfectly invertible 
subband processing systems is to employ lifting schemes [4].  

The authors have recently presented an alternative quaternionic 
building block insensitive to coefficient quantization [5], [6]. The 
use of the component was demonstrated in 4-channel general and 
linear phase PUFBs [7], and 8-channel linear phase PUFB [8], for 
whom appropriate factorizations were provided. The main results 
were: structurally guaranteed perfect reconstruction (up to scaling) 
under a rough coefficient quantization, reduced memory 
requirements, and good suitability for FPGA and VLSI 
implementations, mitigating the disadvantage of increased 
computational complexity. The only weakness of the solution is its 
limitation to the 4- and 8-channel filter banks being very practical, 
however. 

The aim of this contribution is to show and evaluate an 
application of quaternionic building block in 8-channel general 
PUFB, and thus to complete the earlier published results. By the 
way, several interesting factorizations for 8 8×  orthogonal matrices 
are derived, which can be useable if any algorithm involving such 
matrices is implemented in hardware.  
Notations: 

Quaternions are denoted by upper-case characters. Matrices are 
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indicated by bold-faced upper-case characters. nI  denotes the 
identity matrix of size n n× . The transposition is denoted by the 
superscript T . Without loss of generality, all our considerations 
are restricted to special orthogonal matrices with the determinant 
+1.  

2. PRELIMINARIES ON QUATERNIONS 

2.1 Essential properties 
Quaternions are hypercomplex numbers of the form 

 1 2 3 4Q q q i q j q k= + + +  1..4  - real numbersiq =   (1) 

Although they are based on the three imaginary units: , ,and i j k , 
they are very similar to ordinary complex numbers. For example, 
the conjugate quaternion is simply 

*
1 2 3 4Q q q i q j q k= − − − .       (2) 

The modulus (norm) is defined as 
2 2 2 2
1 2 3 4Q q q q q= + + +        (3) 

and it equals unity for the unit quaternions. 
2.2 Multiplication 
In many cases it is very convenient to identify quaternions with 4-
element vectors, i.e. 

[ ]1 2 3 4
TQ q q q q⇔ .       (4) 

In this notation, quaternion addition is equivalent to vector 
summation. In turn, quaternion product is written as 

R PQ= ⇔       (5) 
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It is obviously non-commutative as the multiplication matrix 

( )P+M  for the left operand differs from ( )Q−M  for the right 
one.  

Owing to the specific structures of the matrices, this operation 
requires only 8 real multiplications [9].  

3. QUARTERNIONS FOR ORTOGONAL MATRICES  

3.1 4 x 4 orthogonal matrix 
Although, 8 8×  orthogonal matrices are of interest when 8-channel 
PUFB is considered, we start with a result concerning the 4 4×  
case, being crucial for further investigations.  



Theorem [10]: 
For an arbitrary 4 4×  orthogonal matrix R , there exist a 

unique pair of unit quaternions P  and Q  such that 

( ) ( )P Q+ −= ⋅R M M       (6) 

The proof of this little known fact can be found in [10]. It should be 
noted that the above product is commutative, and it is satisfied by 
the negative quaternions P−  and Q−  as well. 
3.2 8 x 8 block diagonal orthogonal matrices 
Given (6), we can deal with 8 8×  block diagonal matrices. 
Theorem: 

Any block diagonal matrix composed from two arbitrary 
4 4×  orthogonal matrices U  and V , can be modelled with four 
unit quaternions in the following manner 
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( ) ( ){ } ( ) ( ){ }( )
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The first step of the proof of (7) directly utilizes (6). 
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Then, exploiting the fact that both multiplication matrices form 
algebraic groups, we can assume the expansion 

( )
( )

( )
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for both the left and right factors of the product in (8). The matrix 
equation written in this way, has an easily obtainable, unique 
solution. 

It should be noted that the factors in (8) as well as in (9) can be 
reordered. Hence, any reordering of (7) is allowed, not disturbing 
the parentheses. The above factorizations are also unique up to sign. 

The factorization (7) corresponds to the lattice structure 
depicted in Fig. 1.  

 
Figure 1. Lattice structure implementing (7). 

It simplifies significantly if U  is the identity matrix. 
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as only two different unit quaternions are involved in this case. 
The permutation matrix  

6

2

⎡ ⎤
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       (11) 

allow us to apply (10) to a matrix of a slightly different structure as  
{ } { }2 2 4diag , , diag , T= ⋅ ⋅I V I P I V P ,  (12) 

The corresponding schema transformation is shown in Fig. 2. 
As P  is orthogonal, it is trivial to show that 

T⋅ ⋅ = ⋅ ⋅ ⋅ ⋅X P Y P P X P Y        (13) 

 
Figure 2. Structural conversion corresponding to (12). 

for arbitrary X  and Y . But if we take the block diagonal matrices 
from (7), the following equivalence  
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surprisingly turns out to be valid (also for −M  replaced with +M  
or/and P  replaced with TP ). Its structural meaning is explained in 
Fig. 3. 

 
Figure 3. Schema transformation corresponding to (14). 

This result clearly offers some structure simplification. It should be 
noted that the new quaternions are not unit, but the norm of their 
combination is obviously unity. 
3.3 Reduction of 8 x 8 orthogonal matrix 
Other arrangements of quaternion multiplication matrices, similar 
to that from the previous section, can be used to factorize 8 8×  
general orthogonal matrices. 
Theorem: 

An arbitrary 8 8×  orthogonal matrix R  can be represented 
as the product 
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* *
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where ′R  is a 7 7×  orthogonal matrix, and ijr  refers to the ( , )i j  

entry of R .   
The orthogonality of G  can be easily verified. Thus the product  

TG R  of orthogonal matrices must also be orthogonal. Moreover, 
P  and Q  are selected to make the dot product of the first columns 
of R  and G  equal unity. This is the value of the (1,1)  entry of 

TG R , so all the remaining entries in the first row and column of 
this orthogonal matrix must be zeros. Hence, the rest of the entries 
forms an orthogonal matrix ′R  of size 7 7× . 
The corresponding structural conversion is shown in Fig. 4. 

 
Figure 4. Lattice conversion corresponding to (15) 



It should be noted that such a reduction can be done using a 
sequence of Givens rotations or a single Householder reflection, 
but those matrices lose orthogonality under quantization of their 
entries. 
3.4 8 x 8 orthogonal matrix 
To completely decompose an arbitrary 8 8×  orthogonal matrix R  
into quaternion multiplications, let us look at its QR factorization 
using Givens rotations. The corresponding lattice structure is 
depicted in Fig. 5(a), which also explains how to group the 
rotations into five groups representing 4 4×  orthogonal matrices. 
Moreover, these matrices are embedded into 8 8×  identity 
matrices, in the manners considered in Sec. 3.2. Thus, using (12), 
the matrix R  can be represented as the product 
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T T
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The decompositions (7) and (10) can be employed here, utilizing 
quaternionic building blocks. This leads to the structure depicted in 
Fig. 5(b). The reorderings of (7) and the transformation (14) can 
subsequently be applied to obtain the equivalent lattice in Fig. 5(c). 

 
(a) 

 
(b) 

(c) 
Figure 5. Conversion of lattice for 8 x 8 matrix from Givens 

rotations to quaternionic building blocks. 
3.5 Orthogonality and losslessness under quantization 
The factorizations considered in Sections 3.2 through 3.4 were 
designed to utilize orthogonal matrices having constant column, as 
this is necessary for quantization robustness [3]. Such matrices 
were composed of the quaternion multiplication matrices (5) to 
have the same set of absolute values in every row and column. This 
structural property guarantees that the matrix remains orthogonal 
(up to scaling) after its quantization. Moreover, the product of 
quantized matrices is orthogonal too. In turn, the corresponding 
lattice structures are lossless.  

This unique property can not be obtained by factorizing 8 8×  
matrices with Givens rotations, Householder reflections, or mixing 
Givens rotations with quaternionic building block [6]. 

3.6 Complexity considerations 
The matrices used in the above factorizations, arranged from 
quaternion multiplication matrices, have specific structures offering 
computational and memory benefits. 

First, it is sufficient to store in memory only 4 numbers instead 
of each block diagonal matrix on the left side of (7). The product of 
such a matrix with a vector can be computed with 16 real 
multiplications. The same computational complexity is related to the 
matrix on the left side of (14). In this case, 8 numbers must be 
stored, however. 8 coefficients is also sufficient to describe the 
matrix G  in (15), but 32 multiplications are necessary in this case. 

Unfortunately, the lossless property comes at the cost of 
superfluous computations in all the decompositions. The 
computational complexity related to the factorization (7) is 
4 16 64× =  real multiplications, though the factorized matrix has 
only 32 non-zero entries. But only 4 4 16× =  numbers must be 
stored in memory. 

Considering the quaternionic factorization of a 8 8×  general 
matrix from Fig. 5(b), the required number of multiplications is 
20 16 320× = , 5 times more than using the matrix directly. The 
small savings are in memory, as only 16 4 8 48+ × =  coefficients 
must be stored. 

A moderate reduction of computational complexity can be 
noticed in the lattice in Fig. 5(c), needing 16 16 256× =  real 
multiplications. However, 72 numbers must be stored in this case. 

It should be mentioned that the above analysis is rather 
inadequate in the cases of hardware (FPGA or VLSI) 
implementations. Namely, quaternionic building block is well suited 
to these technologies [6], as it can be realized using only shift-and-
add operations. Simultaneously, there are wide parallelization and 
pipelining possibilities. Moreover, the related lattice structures have 
very regular layouts simplifying circuit synthesis and allowing area 
minimization. These advantages extend to the factorizations 
considered here. 

4. 8-CHANNEL GENERAL PUFB 

4.1 Traditional approach 
An adaptation of the classical PUFB design method [2] to the 8-
channel case, leads to the following factorization   

( ) ( ) ( ) ( )
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I
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of the polyphase transfer matrix ( )zE . 0E  is an arbitrary 

orthogonal matrix (possessing 28  degrees of freedom) and each 
iΘ  is a sequence of 7  Givens rotations. Since all these matrices 

are sensitive to coefficient quantization, the transfer matrix losses 
the paraunitary property. 
4.2 Alternative quaternionic lattice 
Given the results from Section 4, one can convert (17) to an 
alternative form guarantying the lossless property even under a 
severe coefficient quantization. 

Namely, 0E  can be modeled as in Section 3.4. In turn, the 
matrix G  from (15) can replace a sequence of Givens rotations in 

iΘ . This is possible because both G  and Givens rotations are kind 
of a remainder resulting from the reduction of an arbitrary 
orthogonal iΘ  to a 7 7×  submatrix which can be moved to the 
adjacent stage 1i−Θ  and finally included in 0E . 

The synthesis filter bank is constructed simply by multiplying 
the inverses of the factors of (17) in reverse order.  



5. DESIGN EXAMPLE 
A practical evaluation of the presented approach was performed on 
8-channel filter bank with filters of the length 16L = , designed to 
maximize the stopband attenuation. The coefficient optimization 
was done using the standard MATLAB function fminunc. The 
infinite precision coefficients determined for the traditional lattice 
based on Givens rotations, were then converted to the coefficients 
of the equivalent quaternionic factorization. 

Given two equivalent systems, the quantization of their 
coefficients was performed using the CSD representation with 
wordlength 8 and the number of non-zeros equal 2.  It should be 
explained that, in the traditional approach, the matrices 1Θ  and 0E  
were directly quantized instead of particular elementary rotations. 
On the contrary, the matrices obtained from the factorization of 1Θ  
and 0E  were quantized for the quaternionic lattice - their 
coefficients are shown in Table 1. 

0E  
P0 = Q0 R0 = S0 

 0.8542159 0.8750000 +2-0-2-3 
 0.2986928 0.3125000 +2-2+2-4 
 -0.3555262 -0.3750000 -2-1+2-3 
 0.2338779 0.2343750 +2-2-2-6 

 0.6269166 0.6250000 +2-1+2-3 
 0.5112678 0.5078125 +2-1+2-7 
 -0.5475108 -0.5625000 -2-1-2-4 
 0.2140390 0.2187500 +2-2-2-5 

P1 = Q1 R1 = S1 
 0.5646208 0.5625000 +2-1+2-4 
 0.5810943 0.5625000 +2-1+2-4 
 0.2654356 0.2656250 +2-2+2-6 
 0.5225674 0.5156250 +2-1+2-6 

 0.5237621 0.5312500 +2-1+2-5 
 -0.4394914 -0.4375000 -2-1+2-4 
 -0.2007534 -0.1875000 -2-2+2-4 
 -0.7015830 -0.7500000 -2-0+2-2 

P2 Q2 
 -0.1091407 -0.1093750 -2-3+2-6 
 0.9270083 0.9375000 +2-0-2-4 
 -0.2690411 -0.2656250 -2-2-2-6 
 -0.2374043 -0.2343750 -2-2+2-6 

 0.9492411 0.9375000 +2-0-2-4 
 -0.1055311 -0.1093750 -2-3+2-6 
 0.2673831 0.2656250 +2-2+2-6 
 -0.1277138 -0.1250000 -2-3 

R2 S2 
 0.8534744 0.8750000 +2-0-2-3 
 -0.3314303 -0.3125000 -2-2-2-4 
 -0.0336804 -0.0312500 -2-5 
 0.4007506 0.3750000 +2-1-2-3 

 0.7985220 0.7500000 +2-0-2-2 
 0.1188791 0.1171875 +2-3-2-7 
 -0.1011158 -0.0937500 -2-3+2-5 
 -0.5813828 -0.5625000 -2-1-2-4 

P3 = Q3 R3 = S3 
 0.7065719 0.7500000 +2-0-2-2 
 0.6743503 0.6250000 +2-1+2-3 
 0.2143848 0.2187500 +2-2-2-5 
 -0.0068558 -0.0078125 -2-7  

 0.7596650 0.7500000 +2-0-2-2 
 0.0150397 0.0156250 +2-6 
 0.0047813 0.0078125 +2-7 
 -0.6501231 -0.6250000 -2-1-2-3 

P4 = Q4 R4 = S4 
 0.5636663 0.5625000 +2-1+2-4 
 0.5889034 0.5625000 +2-1+2-4 
 -0.4492186 -0.4375000 -2-1+2-4 
 0.3656169 0.3750000 +2-1-2-3 

 0.9033501 0.8750000 +2-0-2-3 
 -0.2286368 -0.2343750 -2-2+2-6 
 -0.2494317 -0.2500000 -2-2 
 -0.2635671 -0.2656250 -2-2-2-6 

1Θ  
P Q 

 -0.1331993 -0.1328125 -2-3-2-7 
 0.2383718 0.2421875 +2-2-2-7 
 -0.3627984 -0.3750000 -2-1+2-3 
 0.5557832 0.5625000 +2-1+2-4 

 0.5390552 0.5312500 +2-1+2-5 
 -0.3512911 -0.3750000 -2-1+2-3 
 0.2322585 0.2343750 +2-2-2-6 
 -0.1303431 -0.1328125 -2-3-2-7 

Table 1.  Quaternion lattice coefficients for designed PUFB (from 
left to right: precise value, quantized value, CSD expansion). 

The effects of quantization were then analyzed in terms of the 
channel responses ( ), 0..7kH z k = , as well as the total magnitude 
response of the analysis/synthesis system. 
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Unlike traditional lattice with Givens rotations, the transfer 
function of the quaternionic lattice does not introduce any 
distortions, as 2 15( )T z c z−= . The signal level is only decreased by 
~1dB and this can be easily corrected as  
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27 7 122
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where ( )kh l  denotes the l th coefficient of the k th filter. 
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Figure 6. Magnitude response. 
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Figure 7. Total magnitude response. 

6. CONCLUSIONS 
The application of quaternionic building block in 8-channel general 
PUFB was shown, leading to the lattice maintaining the lossless 
property in spite of coefficient quantization. Theoretical delibe-
rations were supported by one, but quite detailed design example.  

The developed quaternionic factorizations of several classes of  
8 8×  orthogonal matrices seem to be quite interesting and 
applicable in other areas of digital signal processing, unrelated to 
PUFBs.  
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