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ABSTRACT
A general-purpose algorithm is proposed for Independent Compo-
nent Analysis. This algorithm is specifically designed in order to
handle non-differentiable contrast functions. Sources are extracted
one at a time (deflation approach). Examples are given for recently
published contrast functions, e.g. the support width of the estimated
source distribution.

1. INTRODUCTION

Independent Component Analysis (ICA) has been an active research
field for more than a decade [3, 7]. Many ICA algorithms share a
common model in which unknown source signals s are assumed to
be statistically independent random variables. Observed signals y
are then modeled as linear and instantaneous mixtures of the source
signals:

x = As , (1)

where A is the m-by-n mixing matrix (n < m). Starting from this
model, ICA aims at finding a separation matrix B such that a good
approximation of the source signals can be found:

s≈ y = Bx . (2)

In this equation, the approximation symbol means not only that
sources may be imperfectly recovered but also accounts for intrinsic
indeterminacies of the model [3] (scaling and permutation).

Building an ICA algorithm from the above model requires
firstly to formulate a contrast function C(y) that estimates the ‘level
of statistical independence’ between the components of y. Unfor-
tunately, statistical independence is very difficult to measure and
many ICA contrast functions actually computes quantities related
to ‘side effects’ of statistical independence. For example, mutual
information can be a contrast function for ICA [5]. Other con-
trast functions are related to the fact that mixtures of non-Gaussian
sources signals are ‘more Gaussian’ than the sources. Therefore,
measures of non-Gaussianity like negentropy [6], high-order cumu-
lants [8], etc. can help to recover the independent sources in the
ICA model.

Once a contrast function has been defined, the ICA algorithm
has to maximize it. Usually, contrast functions are chosen in or-
der to be differentiable because doing so allows using well known
optimization tools like (natural) gradient ascent [2] or fixed-point
techniques [8]. This practice leaves the field of non-differentiable
contrast functions less explored, due to the difficulty of associating
them with appropriate optimization techniques.

This paper proposes a simple and general-purpose algorithm for
such contrast functions; it is organized as follows. Section 2 defines
some preliminary concepts used in the algorithm. Next, Section 3
details the algorithm itself. Section 4 describes the experimental
setting and gives the results of the algorithm with several contrast
functions. Finally, Section 5 draws the conclusions.

2. FRAMEWORK AND DEFINITIONS

The ICA problem can be greatly simplified by preprocessing the ob-
served variables y by Principal Component Analysis [9, 7] (PCA).

PCA actually plays two roles: it allows both whitening the mixtures
and reducing their number to the number of sources. As PCA yields
uncorrelated mixtures z with zero mean and unit variance, matrix B
can be factorized in the separation formula (2):

s≈ y = WVx . (3)

In this rewritten equation, V results from the PCA and is a n-by-m
matrix defined as

V = diag([λ−1/2
1 , . . . ,λ−1/2

n ]) [e1, . . . ,en]
T , (4)

where ei is the eigenvector associated with the i-th largest eigen-
value λi of the covariance matrix Cxx. In 3, W is an orthogo-
nal matrix (W−1 = WT and detW = ±1) and the only unknown
part that remains in the ICA model. The algorithm proposed in
this paper assumes that mixtures are preprocessed using PCA and is
thus limited to the computation of the orthogonal matrix W starting
from a set of z samples.

Contrast functions for ICA can be global (multi-unit) or com-
ponentwise (single-unit) [7]. In the first case, the function C(y)
summarizes in one scalar value the level of independence between
all pairs of components. In the second case, the function C(y, i)
measures a quantity related to the i-th component of y, which is
typically higher for independent signals than for mixtures of sig-
nals. For instance, mutual information belongs to the first category
whereas negentropy and other non-Gaussianity measures like high-
order cumulants belong to the second one. In the ICA jargon, the
algorithms corresponding to global and componentwise contrasts
are said to follow respectively a symmetric approach (all sources
are recovered simultaneously) or a deflation approach (sources are
extracted one after the other) [7]. The proposed algorithm follows
the second approach and is thus only suited for componentwise con-
trasts. It works by performing small angular variations of the con-
trast argument. For this purpose, the componentwise contrast func-
tion C(y, i) is rewritten as C(wiz), where wi is the i-th row of W.
Knowing that wi is orthogonal to any other row wj , positive and
negative angular variations of wi that preserve the unit norm may
be noted and defined as

wi↑j = cos(α)wi + sin(α)wj , (5)

wi↓j = cos(α)wi− sin(α)wj . (6)

The corresponding contrast values can be written as C(wi↑jz) and
C(wi↓jz).

In order to remain meaningful, the maximization procedure of
the contrast function relies on the following assumptions. Firstly,
the contrast function should be continuous or at least nearly con-
tinuous with respect to α: small variations of α should not cause
disproportionate variations of the contrast. Next, all maxima of the
contrast function should correspond to acceptable solutions of the
ICA problem. On the other hand, it is not assumed that the contrast
function is differentiable with respect to α . Therefore, the con-
trast function may be e.g. a piecewise linear function (discontinu-
ous derivative), a staircase function (derivative in {−∞,0,+∞}) or
any other complicated function with no analytical derivative.



3. ALGORITHM

Under the above-mentioned assumptions, the simple algorithm
shown in Fig. 1 may be used to compute each row of W. Briefly
put, for each row wi, the algorithm looks at the contrast value in
each perpendicular direction (wj with i+1 < j < n), for both posi-
tive and negative angular variations. Then it updates W by rotating
both wi and wj according to the highest contrast value. As it can
be seen, the algorithm keeps W orthogonal.

ICAFORNDC(C ,z,β ,τ )
Input: C (contrast function),

z (whitened mixtures),
β (convergence parameter, default: 0.75),
τ (number of iterations, default: 50).

Output: W (separation matrix).
Auxiliary: α (an angle),

n (number of sources), i, j, t (iteration indices).
Begin

. Initialize W to the identity matrix.
W← In
. Deflation approach: estimate each source sequentially.
for i← 1 to n do

. Iterate for the i-th source
for t← 1 to τ do

. Set the current angle variation.
α ← πβ t

. For each perpendicular direction.
for j← i+1 to n do

. Determine best contrast value.
if C(wi↑jz) > C(wiz) and C(wi↑jz) > C(wi↓jz) then

. Rotate the i-th and j-th rows of W accordingly (+α).
wi,wj ←wi↑j,wj↓i

else if C(wi↓jz) > C(wiz) and C(wi↓jz) > C(wi↑jz) then
. Rotate the i-th and j-th rows of W accordingly (−α).
wi,wj ←wi↓j,wj↑i

end if
end for

end for
end for
Return W

End

Figure 1: Pseudo-code for the deflation ICA algorithm for non-
differentiable contrast functions (comments begin with a ‘.’).

The only parameters of the algorithm are β and τ . Usually,
with the default values, the algorithm has converged after ten or
twenty iterations (10 < t < 20). By construction, the algorithm is
monotonic: the contrast is either increased or kept constant. For this
reason, if spurious maxima of the contrast exist, then the algorithm
could fall in one of them, especially if the initial values of α are too
small or if α decreases too fast during the first iterations.

Similar algorithms using more sophisticated techniques, like
discrete gradient approximations (based on a second-order Taylor
expansion), have been tried too. Unfortunately, they lead to worse
results than the simple proposed algorithm. In addition, they involve
a larger number of parameters, which are tedious for adjusting.

4. EXPERIMENTS

Five ways to perform ICA are compared in this section. They com-
bine three contrast functions and three optimization algorithms.

4.1 Contrast functions
4.1.1 Absolute kurtosis.

The (normalized) kurtosis (or kurtosis excess) of a random variable
y with zero mean and unit variance can be written as

κ(y) =
E{y4}

E{y4}2 −3 = E{y4}−3 . (7)

and measures the non-Gaussianity of the random variable y (for a
Gaussian variable κ(y) = 0). Therefore, the absolute kurtosis of
an estimated source wiz may be used as an ICA contrast func-
tion [8, 7]. Obviouly, the kurtosis is differentiable and is used here
for comparison purposes only, i.e. to show the differences between
the proposed algorithm and another widely used deflation algorithm
(FastICA).

4.1.2 Support width.

Previous work (Support Width Measure [11]) has shown the interest
of the support width as a contrast for ICA. Actually, if sources are
known to be bounded, minimizing the support width of the distri-
bution of an estimated source solves the ICA problem. Knowing a
set of obervations, the support width of a random variable y can be
estimated by

SW(y) = max(y)−min(y) . (8)

This approximation of the support width is very sensitive to noise
and outliers. In order to make them more robust, minimum and
maximum values may be replaced with the averages of the p small-
est and largest values (quantiles may be used too [10]). In the
experiments, p is equal to one percent of the number of observa-
tions. Minimum and maximum (and their robust approximations)
are clearly non-differentiable functions.

4.1.3 Kullback-Leibler divergence.

Many componentwise contrasts are actually non-Gaussianity mea-
sures, like the absolute kurtosis. Knowing that the Kullback-Leibler
divergence [4] (KL) measures a pseudo-distance (it is not symmet-
ric) between two probability density functions (PDFs), it can be
used as an ICA contrast if the KL divergence is measured between a
Gaussian distribution and a an estimated source. Of course, the KL
divergence is difficult to estimate because in its continuous form,
it requires to know the source PDFs and to integrate them. Fortu-
nately, the KL divergence between two random variables y1 and y2
may be approximated using normalized histograms and the discrete
formula:

KL(y1,y2) =
B

∑
k

bk(y1) log
(

bk(y1)

bk(y2)

)

, (9)

where B is the number of bins in the histogram and bk is the normal-
ized height of the k-th bin (∑B

k=1 bk(yi) = 1). In the experiments, the
histogram includes 32 bins in the interval [−6,+6].

4.2 Algorithms
Three ICA algorithms are used: (i) the above-described procedure
for non-differentiable contrasts, (ii) FastICA, version 2.3, defla-
tion approach, fine tuning enabled, (iii) do nothing after whitening,
i.e. W equal to identity. FastICA is used with the absolute kurto-
sis (‘pow3’ nonlinearity), which is the only differentiable contrast
listed in the previous section. The proposed algorithm is used to
• Maximize the absolute kurtosis (AKMICA, C(wiz) =
|κ(wiz)|).

• Minimize the support width (SWICA, C(wiz) =−SW(wiz)).
• Maximize the discrete approximation of the Kullback-Leibler

divergence (KLICA, C(wiz) = KL(wiz,g) where g∼N(0,1)).

4.3 Mixtures
Five mixtures are artificially generated from five sources. These
sources are:
1. A sine wave: sin(13πt/1000).
2. A triangular signal (sawteeth): arcsin(sin(17πt/1000)).
3. Observations drawn from a χ2 distribution with three degrees

of freedom.
4. Observations drawn from a Student’s t distribution with five de-

grees of freedom.
5. Observations drawn from a normal distribution with zero mean

and unit variance.



Thousand observations are computed (t ∈ {1,2,3, . . . ,1000} for the
sine wave and the sawteeth) or drawn at random (for the three other
distributions). Next, the observations are standardized, as in Fig. 2:
the mean of each source is subtracted and each source is divided
by its standard deviation. Then these observations are mixed using
a 5-by-5 matrix whose entries are chosen at random in a normal
distribution with zero mean and unit variance. Finally, the mixtures
are whitened as decribed in Section 2 before running the five above-
mentioned ICA algorithms.
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Figure 2: Artificially generated sources: a sine wave (bimodal dis-
tribution), a triangular sawteeth signal (uniform distribution), ob-
servations drawn from a χ2(3) distribution, from a Student’s t(5)
distribution and from a Gaussian N(0,1) normal distribution.

4.4 Performance assessment
The sources estimated by the five ICA algorithms are compared to
the original sources using the source-to-interference ratio (SIR), in-
spired from [1]. For this purpose, the equation system y = Cs is
solved and for each source the SIR is computed as

SIR(yi) =
∑ j |ci j|

maxi |ci j|
−1 , (10)

where yi = wiz and ci j is the entry of C at the crossing of the i-th
row and j-th column. The SIRs are computed for each source sepa-
rately and then summed to obtain a global performance indicator.

4.5 Results
Five hundreds different mixtures have been generated and sepa-
rated. The histograms of the SIR values are shown in Fig. 3 for
each source and for all sources. Mean and standard deviations of
the SIR for the 500 trials are given in Table 1. The first conclu-
sion to draw is that FastICA remains the fastest ICA algorithm and
offers an appealing trade-off between speed, quality (low mean of
summed SIRs) and robustness (low standard deviation of summed
SIRs). The AKMICA algorithm reaches almost as good results and
even equals FastICA regarding the robustness. This clearly shows
that (i) the kurtosis remains an excellent contrast function for ICA
algorithms, (ii) fixed-point (and probably other algorithms using
analytic gradients) are superior to simpler procedures like the pro-
posed one. Nevertheless, the latter offers other advantages. Firstly,
it may be used with a wide variety of contrast functions. Secondly,
these contrast functions can yield excellent results for specific types
of sources. SWICA clearly outperforms all other studied algorithms
for abruptly bounded sources like the sine wave or the sawteeth
(uniform distribution). In a similar way, KLICA seems particularly

suited for assymetric sources like the χ2 distribution or bimodal dis-
tributions like the sine wave. All in all, KLICA even performs better
than FastICA on the proposed mixtures (lowest average of summed
SIRs) but lacks some robustness: the algorithm sometimes fails to
converge properly (high standard deviation of the summed SIRs).
This good performance, however, requires a sufficient number of
observations and a careful adjustment of the number of bins in the
histogram involved in the discrete approximation of the Kullback-
Leibler divergence.

5. CONCLUSION

A simple ICA algorithm, based on a deflation approach of the ICA
problem and suited for non-differentiable componentwise contrast
function has been studied. Experiments have shown that even a
very simple optimization procedure can solve an ICA problem and
yield high quality results. Because the proposed algorithm is not
limited to differentiable contrasts (like gradient-based algorithms),
new possibilities may be tried. For instance, the support width of the
distribution of the estimated source succeeds very well in recovering
abruptly bounded sources. Similarly, a histogram-based estimate
of the Kullback-Leibler divergence between the distribution of the
estimated source and a standardized Gaussian distribution leads to
good results too, in particular for assymmetric or bimodal sources.

Future works aims at improving the performance and robust-
ness of the proposed algorithm and at developing a symmetric ver-
sion.
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Figure 3: Histograms of SIR values for 500 ICA trials. Source-to-interference ratio (SIR) is shown for each source and for all sources (sum
of SIRs).

Sine Sawteeth χ2(3) Student’s t(5) Normal N(0,1) All sources
FastICA 0.1145 (0.0835) 0.1354 (0.0833) 0.2264 (0.0937) 0.2404 (0.1097) 0.2042 (0.0919) 0.9208 (0.2943)

AKMICA 0.1359 (0.0699) 0.1585 (0.0802) 0.2450 (0.1022) 0.2588 (0.1134) 0.2013 (0.0876) 0.9995 (0.2919)
SWICA 0.0060 (0.0390) 0.0302 (0.0503) 0.5276 (0.4305) 0.5402 (0.3782) 0.5787 (0.2460) 1.6827 (0.9390)
KLICA 0.0962 (0.1496) 0.1596 (0.1621) 0.1173 (0.0557) 0.2556 (0.1525) 0.2351 (0.1327) 0.8638 (0.4438)
Identity 1.6030 (0.5532) 1.6228 (0.5427) 1.5820 (0.5486) 1.6019 (0.5425) 1.6068 (0.5485) 8.0164 (1.4207)

Table 1: Mean and standard deviation of the SIR values for 500 ICA trials. Values are given for each source and for all sources (sum of
SIRs).
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