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ABSTRACT

We present a kernel based method to associate an image
gamut given as a point cloud in three-dimensional Euclidean
space with a continuous shape. The shape we compute is
implicitly given as the zero-set of a smooth function that we
compute from the point cloud using an efficient optimization
method. The feasibility of our approach is demonstrated on
a couple of examples.

1. INTRODUCTION

Kernel methods lately became very popular in machine
learning, see for example the book by Schölkopf and
Smola [8]. Kernel methods are best known in the framework
of support vector machines(SVM) used for binary pattern
classification. Roughly speaking the binary pattern classifi-
cation problem is the following: given a (finite) set of points
in d-dimensional Euclidean space, where each point has an
associated label 1 or −1, respectively. The task is to compute
a function

f : R
d → R,

such that the set {x ∈ R | f (x) ≥ 0} fairly well approximates
the region that contains the input points with label 1 and the
set {x ∈ R | f (x) < 0} approximates the region that contains
the input points with label −1. The kernel approach to the bi-
nary pattern classification problem is to express the function
f as linear combination of kernel functions centered at the
input points. The coefficients in the linear combination are
computed as the solution of an optimization problem, which
is motivated from statistical learning theory. As we have de-
scribed it here the binary pattern classification problem is ba-
sically a shape fitting problem.

An image gamut is essentially a (finite) point cloud in
R

3. When processing image gamuts one often faces the
problem to associate a continuous shape with them. The ap-
proach taken here to compute such a shape is exactly as in
the SVM approach to the binary pattern classification prob-
lem, namely, we compute a function f : R

3 → R as a linear
combination of kernel functions centered at the points con-
tained in the image gamut. We derive the coefficients from
an optimization problem similar to the one in pattern clas-
sification. The only difference to the pattern classification
problem is that our input points are not labeled, i.e., all be-
long to the same class. We are by far not the first to ex-
tend the kernel methodology to single class data, see [7]. But
we demonstrate that the kernel approach to equip an image
gamut with a continuous shape is computationally feasible
and gives shapes that in some respects are better suited for
further processing, e.g., gamut mapping, than existing meth-
ods [3, 1, 5].

2. IMAGE GAMUTS

A gamut is an entirety of colors. For many purposes it
is appropriate to describe a gamut as a subset of a three-
dimensional space. We distinguish two kinds of gamuts -
device and image gamuts. A device gamut is associated with
a device like a printer or monitor and contains all colors that
can be physically realized by the device, whereas an image
gamut is the set of all colors that are contained in an image.
Device gamut descriptions are usually part of ICC-profiles
from which a continuous shape, e.g., a polyhedron, that con-
tains all the realizable colors can be inferred.

Here our focus is on image gamuts of digital images.
Since there are only finitely many colors contained in a digi-
tal image the corresponding image gamut can be represented
by a (finite) point cloud in three-dimensional space. We can
think of the image gamut as embedded in three-dimensional
Euclidean space R

3. But one has to be careful, the Euclidean
structure, i.e., essentially distances and angles, is only mean-
ingful for certain embeddings. One such embedding, where
the Euclidean structure approximately makes sense, is the de-
vice independent color space CIELAB.

Printing a digital image involves mapping the image
gamut into the device gamut of the printer. This is a spe-
cial case of the problem of gamut mapping, which is central
to the whole area of color management. Most approaches
for image-dependent gamut mapping, i.e., where the input
is a point cloud describing an image gamut, first compute a
continuous shape that contains the point cloud and base all
subsequent computations on this shape. Such a shape is also
of independent interest for gamut visualization.

In the following we present a method that computes for
a given image gamut X = {x1, ..xn} a continuous shape that
contains X . Our method works in all three dimensional color
spaces, but since it relies on distance and angle computations
it is arguably best suited for color spaces that approximately
respect the Euclidean structure like for example the CIELAB
color space.

3. SHAPES FROM KERNELS

The choice of the continuous shape to be associated with an
image gamut depends on the intended application. But there
are two frequently encountered objectives, see also [3]. First,
the shape should capture the “geometry” of the gamut as well
as possible, and second, the shape should be efficiently com-
putable. Another objective may be that the boundary of the
shape is a smooth (closed) surface. The latter is helpful for
the gamut mapping framework that we designed in [4]. Here
we describe an approach to equip an image gamut with a
shape that has a smooth boundary based on positive kernels,
or more explicitly on radial basis functions.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Kernel and feature map. A kernel on R
3 is a function

K : R
3 ×R

3 → R.

A feature map on R
3 is a function

φ : R
3 → H ,

where H is a Hilbert space. Using the inner product on H

we get a kernel K from a feature map φ by setting

K(x,y) := 〈φ(x),φ(y)〉

for all x,y ∈ R
3. The latter kernel is an example for a sym-

metric kernel, i.e., it always holds K(x,y) = K(y,x). Further-
more the kernel is positive semi-definite, i.e., for any finite
subset X = {x1, . . . ,xn} ⊂ R

3 the matrix (K(xi,x j)) is posi-
tive semi-definite.

In most cases one does not start with a feature map, but
with a symmetric, positive semi-definite kernel. However,
the notions coincide, namely, any symmetric, positive semi-
definite kernel can be generated by a suitable feature map,
see [6]. That is, given a symmetric, positive semi-definite
kernel K, we know that there exists a corresponding feature
map.

A special class of symmetric, positive semi-definite ker-
nels are derived from radial basis functions, i.e., functions of
the form

k : R≥0 → R≥0.

The kernel associated with a radial basis function k is then
K(x,y) := k(‖x− y‖). In the following we refer to such ker-
nels as radial kernels.

Kernel expansion. Given an image gamut X =
{x1, . . . ,xn} ⊂ R

3 and a radial kernel K on R
3. A ker-

nel expansion is a function

f : R
3 → R, x 7→

n

∑
i=1

αiK(x,xi),

where the αi ∈ R are the coefficients of the expansion. We
can use a kernel expansion to associate a shape S with the
gamut X as follows,

S = {x ∈ R
3 | f (x) ≤ t},

where t ∈ R is some threshold.

Shape optimization. Again, let X be an image gamut, K
a radial kernel and φ an associated feature map into feature
space H . We want to associate X with a shape S derived
from a kernel expansion. In order for S to be meaningful
the kernel expansion has to be meaningful. Here we take
an optimization approach in feature space H as it is usually
done for kernel methods in machine learning, see for exam-
ple [8]. If we find a hyperplane in H that contains all points
of φ(X) on one side, then also the pre-image of this hyper-
plane, which besides in degenerate situations is a closed sur-
face Σ in R

3, has this property. If we can ensure that the
points in X lie on the bounded side of Σ, then the shape S,
i.e., the compact volume bounded by Σ, is at least meaning-
ful in the sense that it contains the points of X . A hyperplane

in H is given by a normal vector w and an offset ρ ∈ R. The
constraints for the hyperplane {y | 〈w,y〉−ρ = 0} read as,

〈w,φ(xi)〉 ≥ ρ , for all xi ∈ X .

The pre-image of the hyperplane is given as

{x ∈ R
3 | 〈w,φ(x)−ρ = 0}.

Among all hyperplanes that fulfill the constraints we choose
the one that has the largest distance to the origin in H . The
latter hyperplane is called a maximum margin hyperplane.
Its choice is not justified by insights into the geometry of the
problem, but we will see later that it gives reasonable results
and can be modified to give even better results. One can
show that a solution to the following optimization problem is
a maximum margin hyperplane, see [8].

minw,ρ
1
2‖w‖2 −ρ

subject to 〈w,φ(xi)〉 ≥ ρ , for all xi ∈ X .

This optimization is better solved in its Lagrangian dual
form, which is a convex, quadratic program and only depends
on kernel evaluations.

minαi ∑n
i, j=1 αiα jK(xi,x j)

subject to 0 ≤ αi, for i = 1, . . . ,n
∑n

i=1 αi = 1,

where the αi are the dual variables of the xi ∈ X . The αi
are exactly the coefficients in the kernel expansion we are
looking for, i.e., they completely characterize the maximum
margin hyperplane in H , namely

w =
n

∑
i=1

αiφ(xi) and ρ = ‖w‖2 =
n

∑
i, j=1

αiα jK(xi,x j).

The kernel expansion now reads as

f (x) =
n

∑
i=1

αiK(x,xi)

and natural choice for the shape S is

S = {x ∈ R
3 | f (x) ≤ ρ}.

The shape S is essentially given by the points xi in X for
which the constraint 〈w,φ(xi)〉 ≥ ρ holds with equality, i.e.,
for which

〈w,φ(xi)〉 = ρ .

We call the latter points support vectors. Note that the sup-
port vectors are contained in the surface Σ, i.e., in the bound-
ary of the shape S. If we have only very few support vectors
that might be an indication that the shape S does not fit the
gamut X as tightly as possible. In that case we are looking
for a way to increase the number of support vectors or points
in X close to the surface to be computed. Schölkopf et al.
came up with a method to do so, see [7]. The idea is to in-
troduce another set of constraints that fits a pair of parallel
hyperplanes aka a slab to the data in feature space. The new
constraints read as follows,

δ ≤ 〈w,φ(xi)〉−ρ ≤ δ ∗. for all xi ∈ X .
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Figure 1: First row: the test image TEAPOT and the computed shape for a sampling rate of 0.2, 0.1 and 0.01. Second row: the
test image WOMAN and the computed shape for a sampling rate of 0.2, 0.1 and 0.01

Maximizing the distance of the slab to the origin results in
the following optimization problem,

minw,ρ
1
2‖w‖2 −ρ

subject to δ ≤ 〈w,φ(xi)〉−ρ ≤ δ ∗ for all xi ∈ X ,

where δ and δ ∗ are parameters that determine the width of
the slab. The Lagrangian dual of this problem again is a con-
vex quadratic program that reads as follows,

min
α(∗)

i
∑n

i, j=1(αi −α∗
i )(α j −α∗

j )K(xi,x j)

−∑n
i=1(δαi +δ ∗α∗

i )

subject to 0 ≤ α (∗)
i , for i = 1, . . . ,n

∑n
i=1(αi −α∗

i ) = 1.

Again, the αi and α∗
i are exactly the coefficients in the kernel

expansion we are looking for. They completely characterize
the maximum margin slab in H , namely

w =
n

∑
i=1

(αi −α∗
i )φ(xi) and ρ = ‖w‖2.

The kernel expansion now reads as

f (x) =
n

∑
i=1

(αi −α∗
i )K(x,xi)

and natural choice for the shape S is

S = {x ∈ R
3 | f (x) ≤ ρ +(δ ∗−δ )/2)}.

Note that we can recover the maximum margin hyperplane
problem (and its solution) by setting δ = 0 and δ ∗ = ∞.

4. IMPLEMENTATION

We used a modified version of the LIBSVM, see [2] to solve
the optimization problems. To ensure feasibility of the prob-

lems we allowed also outliers that we penalized in the objec-
tive function, i.e., the constraints for the problem with out-
liers are

δ −ξi ≤ 〈w,φ(xi)〉−ρ ≤ δ ∗ +ξ ∗
i for all xi ∈ X .

and the objective function is

minw,ρ
1
2‖w‖2 −ρ + c∑n

i=1(ξi +ξ ∗
i ),

where c ∈ (0,1) is a parameter that controls the trade-off be-
tween penalizing the outliers and maximizing the distance of
the slab to the origin. The dual of the latter problem reads as

min
α(∗)

i
∑n

i, j=1(αi −α∗
i )(α j −α∗

j )K(xi,x j)

−∑n
i=1(δαi +δ ∗α∗

i )

subject to 0 ≤ α (∗)
i ≤ c, for i = 1, . . . ,n

∑n
i=1(αi −α∗

i ) = 1.

5. RESULTS

For our experiments we used Gauss kernels that are given as

K(x,y) = exp(−‖x− y‖2/2σ),

where σ > 0 is a parameter. We believe that other kernels
like inverse multiquadrics, see for example [6], should give
similar results.

For our tests we used a suite of test images, both natu-
ral and artificial. Here we will present results for four test
images: RGBCOLORS, WOMAN, BOUQUET and TEAPOT.
The latter three are test images from the International Or-
ganization for Standardization (ISO) and are available at
http://www.iso.org. RGBCOLORS is a generated im-
age that contains the colors of a quantized RGB-cube. Each
axis of the cube is quantized to 64 values.

We mentioned earlier that there is a time quality trade-
off when it comes to the computed shapes, i.e., computing a
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Figure 2: The test images RGBCOLORS AND BOUQUET (on
the left) and the computed shapes for a sampling rate of 0.01
(on the right).

“geometrically more accurate” shape takes longer than just
computing a rough approximation. We dealt with this trade-
off by randomly sub-sampling a gamut X and computing a
shape only for the sub-sample, which is faster but less accu-
rate. Figure 1 shows the results for the test images TEAPOT
and WOMAN for different sampling rates. Figure 2 shows
the result for the test images RGBCOLORS and BOUQUET
for a sampling rate of 0.01. Note that in order to visualize
the computed shapes we triangulated their boundaries using
the marching cubes method.

In Table 1 we provide additional information on our test
cases. The column Size contains the number of pixels of the
image, the column Sampling contains the sampling rate (we
used a random sampling strategy for our tests), the column
SV contains the number of points with a positive or negative
coefficient (these are the points on the boundary of the com-
puted shape) and the column Time contains the running time
measured in seconds (the timing was done on a PC with a
798MHz Pentium III processor).

Image Size Sampling SV Time

RGBCOLORS 393216 0.01 3932 164s
WOMAN 196608 0.01 439 7s

0.1 1144 24s
0.2 2549 2046s

BOUQUET 196608 0.01 1934 33s
TEAPOT 172800 0.01 1714 14s

0.1 17377 198s
0.2 34206 541s

Table 1: Additional data for the test images
Discussion. The computed shapes are kind of roundish but
nevertheless seem to be an appropriate representation for im-
age gamuts. The smoothness of their boundaries make them
especially appropriate for image dependent gamut mapping
algorithms like the one described in [4]. However, we should

point out that in order to make our method practical, we had
to apply random sampling to reduce the number of color
points. In our experiments it turned out that most of the com-
puted shapes are stable under sub-sampling, i.e., the shape
takes a similar form for a quite small sub-sample as it takes
for the whole point cloud. In Figure 1 this is shown for
the image TEAPOT: decreasing the sampling rate by a fac-
tor of 20 from 0.2 to 0.01 hardly influence the shape. How-
ever there are cases like for the example WOMAN, where a
change in the sampling rate also changes the resulting shape.
The running times increase with increasing sampling rate and
range from some seconds to half an hour. For an applica-
tion of the method in an image dependent gamut mapping
algorithm this should and also could be improved by for ex-
ample using a more sophisticated implementation and by de-
creasing the sampling rate even further. In [3] we presented
another method for computing a shape capturing an image
gamut, the discrete flow complex. The discrete flow complex
is fast computable but leads to ragged shapes especially when
an image only contains few colors. It seems that the shapes
obtained by the kernel method are more appropriate to de-
scribe image gamuts however one has to deal with longer
computation times. Finally, the kernel method that we pre-
sented here involves quite some free parameters, e.g., σ the
width of the Gaussian kernel or the width of the slab. So
far we have not thoroughly examined how setting these pa-
rameters affect the computed shapes and the time to compute
them. Hopefully there is a set of parameters that works well
for almost all image gamuts. Since we did not change the
parameter settings much in order to compute the results for
different images and sampling rates it seems likely that such
a set of parameters exists.
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