
IMAGE  SHARPENING  BY  COUPLED  NONLINEAR - DIFFUSION  ON  THE
CHROMATICITY - BRIGHTNESS  COLOR  REPRESENTATION

Takahiro Saito, Reina Nosaka, and Takashi Komatsu

Dept. of Electronics and Informatics Frontiers, High-Tech Research Center, Kanagawa University
3-27-1 Rokkakubashi, 221-8686, Yokohama, Japan

phone: +(81) 45 481 5661,  fax: +(81) 45 491 7915, email: {saitot01, R200570093, komatt01}@kanagawa-u.ac.jp
web: www.ku-hrc.jp

ABSTRACT
Previously we presented a selective image sharpening method with
a coupled nonlinear diffusion process, and it sharpens only blurred
edges without enhancing noise. Our prototypal color-image sharp-
ening methods were formulated on the linear color models, namely,
the channel-by-channel model and the 3D vector model. Our proto-
typal methods sharpen blurred color edges, but they do not neces-
sarily enhance contrasts of signal variations in complex texture
regions so well as in simple step-edge regions. To remedy the draw-
back, we extend our coupled nonlinear-diffusion sharpening method
to the nonlinear non-flat color model, namely, the chromaticity-
brightness model, which is known to be closely relating to human
color perception. We modify our time-evolution PDE’s for the non-
flat space of the chromaticity vector, and present its digital imple-
mentations.

1.     INTRODUCTION
For image sharpening, various filtering methods such as the peaking
technique were developed [1]. However, the filtering methods have
the common disadvantage that they cannot work well for noisy
blurred images; they will enhance noise. Selectivity in image sharp-
ening is the key to its success.

For the selective image sharpening, recently the new line ap-
peared; the nonlinear PDE (Partial Differential Equation) methods
were developed [2]~[12]. Among them, the most basic one is the
bounded-variation image restoration method [3]. This method re-
stores degraded images by minimizing the energy functional com-
posed of the restoration energy term and the smoothness energy
term. The time-evolution equation for the minimization is given by
the Euler-Lagrange PDE, and its steady-state solution is used as a
sharpened image. The method needs the accurate knowledge of the
model of image blurs. If we define the restoration energy properly,
the method will be able to achieve the selective image sharpening.
However, if the blur model is not accurate, it will often produce
visible artifacts.

The other category of the PDE methods is a collection of the
methods that do not need any accurate knowledge of the blur model
and that use the transient solution of the time-evolution PDE as a
sharpened image. The typical methods of this category are the
forward-and-backward diffusion method proposed by Gilboa and
others [7], and our coupled nonlinear-diffusion method [8]~[11].
We applied our method to the selective sharpening of monochrome
and color images [8]~[11]. By quantitative experiments we showed
that our method has a desirable capability to sharpen blurred edges
without enhancing noise. Our method is a flexible selective sharp-
ening method that can be applied to various image-processing tasks

by introducing a certain adaptive control into it.
Our prototypal color-image sharpening methods with the coupled

nonlinear-diffusion process were formulated on the linear color
models, namely, the channel-by-channel model and the 3D vector
model. Our prototypal methods sharpen blurred color edges, but
they do not necessarily enhance contrasts of signal variations in
complex texture regions so well as in simple step-edge regions. To
remedy the drawback, in this paper we extend our coupled nonlin-
ear-diffusion sharpening method to the nonlinear non-flat color
model, namely, the chromaticity-brightness model, which is known
to be closely relating to human color perception [13]~[17]. We modify
our time-evolution PDE’s for the non-flat space of the chromaticity
vector and present its digital implementations. Through experimen-
tal simulations, we compare our new sharpening method based on
the chromaticity-brightness model with our prototypal sharpening
methods based on the linear color models.

2.     SCALAR  IMAGE  SHARPENING  BY  COUPLED
NONLINEAR - DIFFUSION

The forward diffusion process is formulated by the time-evolution
PDE with a positive diffusion coefficient,

( ) , 0 ,f div a f a f aτ∂ = ⋅∇ = ⋅ ∆ >                 (1)
and it smooths out noisy variations and it blurs edges, whereas the
backward diffusion process is formulated by the time-evolution
PDE with a negative diffusion coefficient,

( ) , 0 ,f div a f a f aτ∂ = − ⋅∇ = − ⋅ ∆ >               (2)
and it sharpens blurred edges to steeper edges. The popular peaking
method formulated by

, 0f a f a− ⋅∆ >                                   (3)
has the property of the backward diffusion, and creates overshoots
near edges 1. However, the backward diffusion has crucial draw-
backs: instability, oscillations and noise amplification. The promis-
ing approach to solve them is to introduce the competition between
the forward diffusion and the backward diffusion into the process.
We need to control the competition so that the backward diffusion
will dominate over the forward diffusion only near blurred edges.
The typical methods utilizing the competition are the forward-and-
backward diffusion method proposed by Gilboa and others [7], and
our coupled nonlinear-diffusion method [8]~[11].

Our coupled nonlinear-diffusion method introduces the compe-
tition between the Perona and Malik (P-M) nonlinear-diffusion
term [4] and the peaking term into the process, and for the peaking
term it uses regularized spatial derivatives given by the P-M pro-
cess of image derivatives. The utilization of the regularized deriva-
tives corresponds to the spatial regularization [12], but instead of
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the Gaussian smoothing our method employs the P-M process.
The time-evolution equations of our method are given by
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: artificial time parameter,τ

  (4)

where the auxiliary functions u, v approximate the first horizontal
and vertical partial derivatives of the function f, respectively. The
initial condition is given by

( ) ( )
( ) ( ) ( ) ( )

, ;0 , ;

, ;0 , ; , ;0 , .x y

f x y I x y

u x y I x y v x y I x y

=

= ∂ = ∂           (5)

The transient solution of the time-evolution PDE of (4) is used as a
sharpened image. Previously we presented a decision scheme to
halt the time-evolution at the ideal moment when it achieves the
best selective image sharpening.

The first equation in (4) formulates the time-evolution of the
image f, and is composed of the P-M nonlinear-diffusion term, the
peaking term and the fidelity term. The amount of overshoots to be
added is controlled by the shooting parameter s that is typically set
to a positive value less than 1.0. The competition between the P-M
term and the peaking term will result in smoothing out noisy varia-
tions within a homogeneous region, whereas the competition will
produce overshoots only near blurred edges. The second and the
third equations in (4) formulate the time-evolution for regularizing
the two auxiliary functions u, v approximating the spatial deriva-
tives of the image f, and they are composed of the P-M term and the
fidelity term. The time-evolving auxiliary functions u, v are used for
the computation of the peaking term in the first equation.

3.     SHARPENING  METHODS  BASED  ON  THE
LINEAR  COLOR  MODELS

In this paper we focus on the primary color space. In this color
space, a color vector at each pixel is represented by a 3D vector
whose components are values of the three primary colors. In the
following, the time-evolving color vector C, the input color vector
I and the auxiliary vectors u, v at each pixel (x,y) are represented by
the two-variable vector functions as follows:

( ) ( ) ( ) ( )( ), , , , , , .
T

R G Bx y C x y C x y C x y=C            (6)
Our prototypal color-image sharpening methods were formulated
on the linear color models, namely, the channel-by-channel color
model and the 3D vector color model.

3.1     I-Scheme: Independent scheme based on the channel-
by-channel color model

The I-scheme is formulated on the channel-by-channel color model,
and it applies the time-evolution of (4) independently to each color
component. Moreover, the I-scheme employs the simultaneous
stopping scheme that halts the iterations of all the three components
of the color vector C all at once.
3.2     V-Scheme: Vector scheme based on the 3D vector color

model
The V-scheme is formulated on the 3D vector color model, and it

collectively treats all the color components. It uses the magnitude
of a color edge to control the nonlinear-diffusion term in the time-
evolution of C. The color-edge magnitude is computed from the
structure tensor H:

( ) 22; , , , .x x y y

E F
E F G

F G
 

= = ∂ = ∂ ∂ = ∂ 
 

H C C C C  (7)

The color edge appears along the eigenvector corresponding to the
maximum eigenvalue λ+ of H, and the color-edge magnitude γ is
defined by using the maximum eigenvalue λ+ and the minimum
eigenvalue λ-

 of H:

( )( )
1

2 424 .E G Fγ λ λ+ −= − = − +               (8)

The V-scheme employs the nonlinear-diffusion time-evolution:

( )( ) ( )( ) ( )
( ) .

x x y y x y

C

g g sτ γ γ

λ

∂ = ∂ ⋅∂ + ∂ ⋅∂ − ⋅ ∂ + ∂

− ⋅ −

C C C u v

C I         (9)

( )( ) ( )
1

2 2 2424 ; , , ,E G F E F Gγ = − + = = =u u v v

As the time-evolution for the two auxiliary vector functions u, v,
the V-scheme employs the same time-evolution equations as the I-
scheme. Moreover, the V-scheme employs the simultaneous stopping
scheme that halts the iterations of the three components of the
color vector C all at once.

The I-scheme and the V-scheme sharpen blurred color edges to
steeper edges, and the V-scheme outperforms the I-scheme.
However, both the I-scheme and the V-scheme do not necessarily
enhance contrasts of signal variations in complex texture regions so
well as in simple step-edge regions. To solve the problem, we extend
our coupled nonlinear-diffusion sharpening method to the nonlinear
non-flat color model, namely, the chromaticity-brightness model,
which is known to be closer to human color perception [13], and
forms a more flexible color-image sharpening method in which
parameter setting is more adaptable to human perception.

4.     SHARPENING  METHOD  BASED  ON  THE
CHROMATICITY - BRIGHTNESS  COLOR  MODEL

We present a new sharpening method based on the chromaticity-
brightness color model, and we call it the CB-scheme for short. The
chromaticity-brightness color model decompose the 3D primary
color vector C into two components, namely, the brightness com-
ponent r = ||C|| and the chromaticity component w = C / r [13]~[17].
The chromaticity component w lives on the unit sphere S2 embed-
ded in R3. The brightness component r and the chromaticity com-
ponent w = (w1, w2, w3)

T have the properties:
0 ; 1 and 0 .nr w> = ≥w                       (10)

The brightness component r is treated as a scalar image, and
hence the time-evolution equations of (4) is directly applied to it.
On the other hand, the chromaticity component w is non-flat, be-
cause it takes a vector on the unit sphere S2. Thereby we cannot
directly apply the time-evolution equations of (9) for the V-scheme
defined in R3, and we need to modify them by replacing the flat
derivative operators ,x y∂ ∂  in R3 with the covariant derivative op-
erators * *,x y∂ ∂  acting on the vector field defined at the point w(x,y)
on the unit sphere S2. In this case, the covariant derivative *

x∂  is
computed by projecting the flat derivative x∂  onto the tangent
space Tw(x,y) of the unit sphere S2 at w(x,y) as follows [16], [17]:

( ) { }

( ) { } ( )( ) ( )

( )

*
.

,

,

,

, , ,

: projection onto the tangent space .

x xx y

x y

x y
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w

w
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Since the fidelity term is also given by the covariant gradient of the
squared fidelity energy, the fidelity error should be projected onto
the tangent space Tw(x,y). Thus, all the updating terms for the time-
evolution of the chromaticity component w(x,y) are projected onto
the tangent space Tw(x,y). In addition, since the auxiliary vector func-
tions u, v live on the tangent space Tw(x,y), their updated vectors
should be projected onto the tangent space Tw(x,y).

For the chromaticity component w, the time-evolution equations
are modified as follows:

( )( ) ( )( ) ( )
( ) ( )

( ) ( )( ) ( )( ){
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The actual iterative discrete algorithm is as follows:
[ Iterative discrete algorithm for the chromaticity component w ]
In the following, w on the pixel location (i, j) at the τ iteration is
denoted by ( )

,i j
τw .

0) Initial setting:
( ) ( )
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1) Update of u:
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2) Update of v:
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3) Update of w:
3-1) Calculation of the tentative vector p:

( )
( ) ( ) ( ){ } ( )( )

( ) ( )( ) ( ) ( )( ){ }
,

, , , , ,
, , ,

1 1 1 1
1, 1, , 1 , 12

i j
i j i j d i j i j i j

d N S E W

i j i j i j i j

g

s

τ

τ τ τ

τ τ τ τ

ε γ λ
=

+ + + +
+ − + −⋅


= + ⋅Π ⋅∇ − ⋅ −


− − + − 

∑ ww

w

p w w w I

u u v v
(16)

3-2) Under-clipping of the tentative vector p:

{ } ( ) ( )

[ ]( ) [ ]( )

[ ]( )
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3-3) Normalization of the tentative vector q:
( )1
, , ,i j i j i j
τ + =w q q                                   (18)

[ End of the algorithm ]

In the discrete algorithm for the chromaticity component w, if we
fix the parameter ε of the updating speed and the parameter K in the
edge-stopping function g at constant values irrespectively of the
brightness component r, it may incur unevenness in improvements
in image sharpness and noiselessness. To cope with this problem,
we control the parameters ε, K as functions of the brightness com-
ponent r of the input color image I as follows:

1

, 0 , 0, : small positive constant ,i j i jε ε ε
−

= ⋅ I                (19)

, , ,

: standard deviation of additive Gaussuan noise
in an input noisy blurred image.

i j N i j

N

K σ

σ

= I

   (20)

5.     PERFORMANCE  EVALUATIONS
5.1     Test color images and performance measures
We evaluate performance of our schemes using artificially blurred
test color images. First we blur an original sharp color image P(x,y),
given in primary color components,

( ) ( ) ( ) ( )( ), , ,  , ,  , ,
T

R G Bx y P x y P x y P x y=P               (21)
with the circular blurring filter having the impulse response h,

( )
( )
( )

2 2
2

2 2

1 ,
2, ; ,

0 ,

if x y r
rh x y r

if x y r
π

 + ≤= 
 + >

            (22)

and then add random Gaussian noise to the blurred color image
h*P(x, y); thus we generate an artificially blurred test color image
Q(x, y), given in primary color components. Let R(x, y) denote the
sharpness-enhanced color image reproduced from the blurred test
color image Q(x, y).

For the performance evaluation, we define the quantitative
measures [8] in the primary color space as follows.
1) Peak SNR of the sharpened color image R: PSNR [dB] is
computed between the original sharp color image P and the
sharpened color image R.
2) Blur-Removal Ratio Br and Noise-Removal Ratio Nr : Let the
vectors, b, n, s, denote circular image blurs artificially added to the
original color image P, random Gaussian noise added to the
circularly blurred color image h*P, and deviations of the artificially
blurred test color image Q from the sharpened color image R, i.e. Q
– R, respectively. We define those vectors, b, n, s, by arranging
their values of the three primary colors at all the pixels in one
column. Then, we define Br and Nr as follows:

( ) ( )2 2Br , , Nr , .= =b s b n s n               (23)
The positive value of Br / Nr means that the blur / noise removal is
successfully achieved. If blur / noise is perfectly removed, then the
value of Br / Nr will be 1; but the reverse is not necessarily true. On
the contrary, the negative value means that the blur / noise is
augmented far from being removed.
3) Artifact-Component Ratio Ar : We define Ar as follows:

( )( )
[ ]

1
,

, : identity matrix .

Ar

  ,  

T T−
− ⋅ ⋅ ⋅ ⋅=

=

I A A A A s s

A b n I
             (24)

Ar is given by the ratio of the norm of the projection of s onto the
orthogonal complement of the linear subspace spanned by b and n,
to the norm of s, and it quantifies how far the enhancement signal
component -s, produced by the sharpening algorithm, contains
undesirable artifacts irrelevant to the compensation for b and n. If
no artifact occurs, then the value of Ar will be 0.
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5.2     Evaluation results
Fig.1 shows the original color images used for the performance
evaluations. Table 1 shows the values of PSNR, Br, Nr and Ar for
the color images sharpened by our new CB-scheme and our previ-
ous V-scheme. As shown in Table 1, for the images other than the
monochrome stripe image, our new CB-scheme gives a higher
PSNR than the V-scheme, and with regard to the other quantitative
measures, Br, Nr, Ar, our new CB-scheme outperforms our previ-
ous V-scheme. For monochrome images, the chromaticity-bright-
ness model does not work so well. Fig.2 and Fig.3 compare the
same portions of color images sharpened by our new CB-scheme
with those sharpened by our previous V-scheme. Though the V-
scheme sharpens blurred step edges to steeper edges, it does not
necessarily enhance contrasts of blurred intensity variations in
very complex texture image regions so well as in simple step-edge
regions. On the other hand, our new CR-scheme sharpens not only
blurred step edges but also blurred complex textures to some extent.
Our CR-scheme achieves the selective color-image sharpening with
a subjectively superior quality.

6.     CONCLUSIONS
The quantitative evaluations using artificially blurred test images
demonstrate that our new CR-scheme sharpens blurred color edges
and complex textures selectively better than our previous V-
scheme. We are studying the application of our schemes to the real
image processing problems: pre-processing and post-processing
for demosaicking, motion de-blurring, suppression of breathing
distortions, and so on.
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Figure 1 - Original sharp color images used for the simulations

(a) Glass

(d) Bottle

(e) Chart (f) Stripe

(b) Cafeteria

(c) Fruit
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Table 1 - Selective sharpening performance of our new CB-scheme and our previous V-scheme for the blurred test images

Blurred image Methods PSNR [dB] Br Nr Ar

Glass CB-Scheme 36.894 -0.071 0.736 0.476

33.086 [dB] V-Scheme 36.492 -0.185 0.686 0.43

Cafeteria CB-Scheme 24.45 0.441 0.092 0.753

22.101 [dB] V-Scheme 24.078 0.403 -0.149 0.767

Fruit CB-Scheme 40.011 -0.1 0.78 0.358

33.695 [dB] V-Scheme 39.994 0.14 0.756 0.424

Bottle CB-Scheme 34.799 0.394 0.661 0.635

31.236 [dB] V-Scheme 34.256 0.456 0.534 0.704

Chart CB-Scheme 33.329 0.752 0.548 0.547

28.254 [dB] V-Scheme 33.068 0.745 0.509 0.56

Stripe CB-Scheme 38.753 0.877 0.837 0.183

25.091 [dB] V-Scheme 39.636 0.902 0.811 0.164

(a) Original sharp image (b) Blurred test image
(PSNR = 22.101 dB)

(c) Sharpened image by our new
CB-scheme

(PSNR = 24.450 dB)

(d) Sharpened image by our pre-
vious V-scheme

(PSNR = 24.078 dB)

Figure 3 - Original sharp image, blurred test image and sharpened images

(a) Original sharp image (b) Blurred test image
(PSNR = 33.086 dB)

(c) Sharpened image by our new
CB-scheme

(PSNR = 36.894 dB)

(d) Sharpened image by our pre-
vious V-scheme

(PSNR = 36.492 dB)

Figure 2 - Original sharp image, blurred test image and sharpened images
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