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ABSTRACT
Once image motion is accurately estimated, we can utilize those
motion estimates for image sharpening and we can remove motion
blurs. First, this paper presents a variational motion de-blurring
method using a spatially variant model of motion blurs. The standard
variational method is not proper for the motion de-blurring, because
it is sensitive to model errors, and occurrence of errors are inevitable
in motion estimation. To improve the robustness against the model
errors, we employ a nonlinear robust estimation function for
measuring energy to be minimized. Secondly, we experimentally
compare the variational method with our previously presented PDE-
based method that does not need any accurate blur model.

1.     INTRODUCTION
Relative motion between the objects in a scene and the camera
during the aperture time gives rise to spatial blurring, which is
referred to as the motion blur [1]. The motion blur can be modeled
approximately by a 1-D spatial integration. In a moving image
sequence, each pixel undergoes the 1-D spatial integration along the
direction of its local image motion, and the resultant motion blur is
linear but shift-variant. Once local image motion is accurately
estimated for every pixel of a given input image sequence, we can
utilize those motion estimates for sharpening the image sequence
and thus we can remove motion blurs selectively. Since motion blur
is spatially variant, a simple linear pseudo-inverse filtering technique
is not applicable. To remove motion blurs, a spatially variant model
of motion blurs should be taken into account.

This paper presents a variational motion de-blurring method
minimizing the regularized energy functional that is defined with a
spatially variant model of motion blurs. Since the method adopts
the spatially variant model, unlike the usual case of spatially
invariant image blur, the minimization problem cannot be solved in
a closed straightforward way, and it leads to an iterative sharpening
algorithm. The standard regularized variational method uses a square
function to measure energy of a solution function [2]~[3], and it
employs the energy functional composed of both the data-fidelity
energy term to measure energy of a deviation of an input noisy
blurred image from the assumed model of motion blurring and the
regularization energy term to impose smoothness constraints on a
solution function. However, the standard regularized variational
method is not necessarily proper for the problem of motion de-
blurring, because it is sensitive to model errors [2]~[3], and the
occurrence of errors are inevitable in local motion estimation, to
make matters worse. To improve the robustness of the variational
motion de-blurring method against model errors, we introduce a
robust estimation function [4] into the data-fidelity energy term.
Furthermore, we experimentally compare the variational method

with our previously presented PDE-based method [5]~[6] that does
not need any accurate model of motion blurs, particularly from the
point of robustness against model errors caused by erroneous motion
estimation.

2.     MODEL-BASED  VARIATIONAL  METHOD  FOR
MOTION  DE-BLURRING

2.1     Spatially variant model of motion blurs
First we formulate the model of motion blurs as the linear degradation
model at each pixel P(x, y) on the 2D image plane Ω defined as a
subset in R2. Let I (x, y) be an input degraded image containing
motion blurs. The input image I (x, y) is defined on the 2D image
plane Ω. Then the model of the motion blurs is formulated as the
operation:

( ) ( ) ( ), , , ,I x y f x y w x yϕ= +                      (1)
where f (x, y) is an original image, w (x, y) is independently and
identically distributed (IID) additive noise, and ϕ is a motion-
blurring operator. The motion-blurring operator ϕ is defined as the
1-D integration of original intensity along a motion vector
V(x,y)=(Vx(x,y), Vy(x,y))T at each pixel P(x, y). Hence the motion-
blurring operator ϕ is linear, but not spatially invariant, and it cannot
be expressed as an operation of the simple spatial convolution. The
effect of the motion blurring is formulated as the spatially variant
integral transformation:
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where the kernel function η (x’, y’; x, y) is dependent on a motion
vector at a pixel P(x, y). In the following, assuming that the temporal
integration of incident light during an aperture time between t-1/2
and t+1/2 yields pixel intensity of a frame at time t, we define the
kernel function η (x’, y’; x, y). Discretizing the integral transformation
of (2) and reformulating it as a spatially variant weighted sum, we
get the discrete form:
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where η  k, l; i, j is a (2 1) (2 1)M M+ × +  discrete weight pattern
characterizing an operation of a weighted average along a motion
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vector Vi, j at each pixel P(i, j). The discrete weight pattern is
approximately estimated by taking a spatial aperture of each pixel
into account. In this paper, assuming that each pixel has a spatial
aperture of a circle with a diameter of a pixel interval, in advance we
form the discrete weight patterns η for various motion vectors
V=(Vx, Vy)T whose components are given by pixel accuracy and use
the patterns for η k, l; i, j in (3).
2.2     Iterative variational sharpening algorithm
A pseudo-inverse operation of the motion-blurring operator ϕ
restores an image by minimizing the data-fidelity energy to measure
a deviation of a solution function from the assumed model of motion
blurs, but it is generally unstable [7], and the motion de-blurring
problem is a typical ill-posed problem. To convert an ill-posed
problem to a well-posed one, the regularization of the solution
function f is applied. For that purpose, first we employ the energy
functional composed of the data-fidelity energy term and the
regularization energy term, as follows:

[ ] ( ) ( ) ,r dE f f f I dx dyρ λ ρ ϕ
Ω

 = ∇ + ⋅ − ⋅ ⋅ ∫∫              (4)

( ) ( ), : Energy cost functions of a variable r dz z zρ ρ
where the functions ρr, ρd are energy cost functions. The first term
in the energy functional E[f] is the regularization energy term, and it
imposes smoothness constraints on the solution function f defined
on the image plane Ω. If we employ a square function z2/2 as the
cost function ρr (z), it will produce an over-smoothing effect on the
solution function f. Hence, a robust M-estimation cost function [4]
is preferable, and it suppresses a smoothing effect in image regions
whose intensity gradients are very high. On the other hand, the
second term in the energy functional E[f] is the data-fidelity energy
term, and it restrains the solution function f from drifting away
from the model of motion blurs of (1). For this data-fidelity energy
term, also, a robust M-estimation cost function is preferable, because
motion estimation is not necessarily reliable, and inevitable errors
in motion estimation will produce severe artifacts on the solution
function f, in the case of adopting the square cost function z2/2. To
suppress a bad influence of a large data-fidelity error z f Iϕ= −
produced by poor motion estimation, a robust M-estimation cost
function should be adopted. The parameter λ in the energy functional
E[f] of (4) controls the balance of the influence of the two energy
terms. If λ is too large, the minimization of E[f] will be unstable and
very sensitive to random noise, and it will reduce to the pseudo-
inverse de-blurring as λ goes to infinity. Conversely, if λ is too
small, the regularization energy term have an unnecessary over-
smoothing effect on the solution function f. In this paper, taking
into account particularly the robustness against random noise, the
value of the parameter λ is experimentally determined, and in addition
the two nonlinear functions ρr, ρd are selected through experiments.
As the functions ρr, ρd , the combination of the following two
functions achieves well-balanced de-blurring with fidelity and
stability.
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The use of the Cauchy function in the regularization energy term
produces a selectively smoothing effect of the Perona-Malik
nonlinear diffusion type [8] on the solution image function f. The

bi-weight function behaves approximately as the square cost
function z2/2, when the magnitude of a data-fidelity error
z f Iϕ= −  is small; it replaces z by a constant value Kd

2/6 when
the magnitude of a data-fidelity error z f Iϕ= −  exceeds a
threshold value Kd. The optimal values of the parameters Kr, Kd
characterizing the two functions ρr, ρd are dependent on variance of
additive random noise and tolerance to model errors, respectively.
In this paper, the parameter Kr is fixed at 5, whereas the parameter
Kd is fixed at 30. These parameter values are selected empirically.
For comparison, this paper experimentally studies the model-based
PDE method that uses the square function z2/2 for energy cost
function ρd.

The Euler-Lagrange equation minimizing the energy functional
E[f] of (4) is given by the nonlinear PDE:

( ) ( )* 0 ,d rf I div f fλ ϕ ψ ϕ ψ ⋅ − − ∇ ⋅∇ =                     (7)
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where the Neumann boundary condition is applied. The second
term in the nonlinear PDE of (7) is the nonlinear diffusion term, and
the function ψr (z) is a nonlinear function determining its nonlinear
diffusion coefficient. On the other hand, the function ψd (z) in the
first term is the robust influence function that is defined as the first
order derivative of the bi-weight function of (6); if the magnitude of
a data-fidelity error z f Iϕ= −  exceeds the threshold value Kd,
the influence of the data-fidelity error will be set at zero and will be
neglected The operator ϕ* in the first term is an adjoint operator of
the motion-blurring operator ϕ, and it is defined by the integral
transformation:
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The discrete form of the adjoint operator ϕ* is expresses as
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where the subset Ω is the support of the solution image function f
and the subset Φ is the range of indices (k, l) of the discrete weight
pattern η k, l; i, j of the operator ϕ. Since the adjoint operator ϕ* as
well as the motion-blurring operator ϕ is linear, but spatially variant,
the Discrete Fourier Transform technique [7] is not utilized to solve
the PDE of (7) in a non-iterative way. Its solution requires an
iterative method.

Starting from the Euler-Lagrange PDE of  (7), we derive a discrete
iterative sharpening algorithm as follows. Introducing an artificial
time variable τ and replacing the image function f (x, y) by the time-
evolving image function f (x, y;τ), we reformulate (7) as the time-
evolution PDE of the image function f (x, y;τ):

( ) ( )* .r df div f f f Iτ ψ λ ϕ ψ ϕ ∂ = ∇ ⋅∇ − ⋅ −       (10)

( ) ( )Initial condition: , ; 0 ,f x y I x y=
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where τ∂  is the first-order partial derivative operator with respect
to the artificial time variable τ. Initializing the time-evolving image
function f (x, y;τ) as the input motion-blurred image I (x,y) and then
evolving the image function f (x, y;τ) according to (10), the image
function f (x, y;τ) will converge to the solution image function of the
Euler-Lagrange PDE of (7). Thus the steady-state solution of the
time-evolution PDE of (10) is employed as a sharpened recovery
image. The actual discrete iterative sharpening algorithm is derived
by discretizing the time-evolution equation of (10). In the
discretization, the forward-difference approximation is applied to
the partial derivative operator τ∂ , the standard Perona-and-Malik
discretization technique [8] is applied to the calculus of the nonlinear
diffusion term, and equations of (3) and (9) are used for the
computation of the motion-blurring operator ϕ and its adjoint
operator ϕ*.

The discrete iterative sharpening algorithm is as follows:
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In (11), for a stationary pixel whose motion vector is a zero vector,
as the motion-blurring operator ϕ we set the identity operator ϑ
that for an arbitrary image function satisfies the property

f fϑ = . The intermediate variable z(τ) in (11) is a deviation of
the computed motion-blurred image ( )f τϕ  from the actual
motion-blurred image I, and the adjoint operator ϕ* is applied to
the deviation z(τ). The parameter ε is a parameter to control the
speed of iterations. At each iteration cycle, first the deviation z(τ) is
computed, and then the time-evolving image function f (x, y;τ) is
updated. The iteration cycle is repeated until convergence. Actually,
when the relative magnitude of updates for the entire time-evolving
image function f (x, y;τ) at the τ-th iteration is under a small threshold
value, the iteration cycle is automatically stopped.

In addition to the de-blurring method of (10), for comparison, we
experimentally study a kind of pseudo-inverse model-based de-
blurring method that minimizes the data-fidelity energy defined
with the energy cost function ρd that is either the Cauchy function
or the square function z2/2, and its basic time-evolution equation is
given by

( )* .df f Iτ ϕ ψ ϕ∂ = − −                                    (12)

( ) ( )Initial condition : , ; 0 ,f x y I x y=

3.     EVALUATION  OF  SHARPENING  PERFORMANCE
In this paper, to evaluate sharpening performance of the motion de-
blurring methods separately from motion estimation, we assume
that true motion vectors are given, and without estimating motion
vectors we perform experimental simulations of the motion de-
blurring. For the quantitative performance evaluation, we use a test

moving image sequence containing artificial motion blurs, and we
compute the peak SN ratio PSNR [dB] between the sharpened image
and the original sharp image. First, we synthesize a motion-blurred
test image sequence on the assumption that in front of a stationary
background image a smaller sharp image plane moves with a constant
velocity V=(Vx, Vy)

T, and then we add random Gaussian noise with
zero mean and standard deviation of 3.0, to the blurred image
sequence; thus we generate a test moving image sequence. Fig.1(a)
shows the original small sharp image embedded in the original
background image, and Fig.1(b) shows the motion-blurred test image
generated by fixing the motion vector V of the embedded small
image at (3,3)T. In Fig.1(b), motion blurs appear along the direction
of the motion vector (3,3)T. In the simulations, we set the vector of
(3,3)T as the true motion vectors at all pixels in the embedded moving
small image, whereas we set the vector of (0,0)T as the true motion
vectors at all pixels in the stationary background image region outside
the embedded moving small image; the true motion vectors are used
for constructing the motion-blurring operator ϕ. In addition, we fix
the parameters { ε, λ, Kr, Kd } at { 0.05, 1.0, 5.0, 30 } respectively,
and these values are determined through experiments.

For comparison we experimentally study the five different motion
de-blurring methods:
(a) Model-based motion de-blurring method A that employs the bi-
weight function of (6) as the energy cost function ρd in the time-
evolution PDE of (10),
(b) Model-based motion de-blurring method B that employs the
square function as the energy cost function ρd in the time-evolution
PDE of (10),
(c) Model-based motion de-blurring method C that employs the bi-
weight function of (6) as the energy cost function ρd in the time-
evolution PDE of (12),
(d) Model-based motion de-blurring method D that employs the
square function as the energy cost function ρd in the time-evolution
PDE of (12),
(e) Model-free motion de-blurring method E Previously we presented
a model-free PDE method that does not need any accurate model of
motion blurs [5], [6]. This model-free PDE method is based on a
coupled nonlinear diffusion process that is composed of a nonlinear
diffusion term, an anisotropic peaking term and a fidelity term.
Since motion blurs are anisotropic, as the peaking term we employed
the anisotropic peaking term that produces overshoots steered in
direction of motion at each pixel. Unlike the model-based method,
the model-free method uses a transient image of the time-evolution

(a) Original small sharp image
embedded in  the or iginal
background image

(b) Motion-blurred test image
generated by fixing the motion
vector V of the embedded small
image at (3,3)T

Figure 1 - Original image and the motion-blurred test image

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



PDE as a sharpened image. Our proposed decision scheme to stop
the time-evolution halts the iteration almost at the ideal moment
when the time-evolution achieves the best selective sharpening.

Under the ideal condition that the true motion vectors are given,
we apply the five different motion de-blurring methods to the
motion-blurred test image of Fig.1(b), and compute an improvement
in the peak SN ratio PSNR [dB] of each sharpened image over the
motion-blurred test image. Table 1 compares the PSNR
improvements for the five different motion de-blurring methods,
and it shows both the PSNR improvements within the embedded
moving small image and those over the whole image. Fig.2 compares
the sharpened images given by the three different motion de-blurring
methods A, C.

In table 1, the model-based motion de-blurring methods A, B, C,
D give higher PSNR improvements than the model-free motion de-
blurring method E. In the ideal case that the true motion vectors are
given, the comparison between the method A and the method B, or
between the method C and the method D, shows that the model-
based method using the square function provides a somewhat higher
PSNR improvement than the model-based method using the bi-
weight function. If the true motion vectors are given, the square
function will be preferable to robust M-estimation cost functions.
As shown in Fig.2, the model-based method C, which are not
reinforced with the regularization, produces noticeable artificial
checked pattern in the image region of the embedded small moving
image; whereas the model-based method A, which are armed with
the regularization, does not produce such artifacts and provides a

subjectively good quality sharpened image. On the other hand, the
model-free method E excessively flattens original small intensity
variations, and its sharpened image gives a visually artificial
impression [5], [6]; whereas the model-based method A reproduces
edges and textures more clearly, and the visual impression of its
sharpened image is more vivid.

Moreover, to evaluate the robustness of the motion de-blurring
methods against errors in the model of motion blurs, we add
statistically independent Gaussian noise with zero mean and standard
deviation σv to each component of the true motion vector at each
pixel, and then omit its decimals; we use the resultant noisy motion
vectors for constructing the motion-blurring operator ϕ at each
pixel. Fig.3 compares the sharpened images given by the two
different motion de-blurring methods A, B in the case of σv=1.25,
where for approximately two thirds of all the pixels their motion
vectors do not coincide with the true motion vectors. Fig.4 compares
the update characteristics of the motion de-blurring methods A, B
for various values of the standard deviation σv, and it shows both
the update characteristics within the embedded moving small image
and those over the whole image.

The model-free motion de-blurring method E, which does not
utilize the model of motion blurs and uses only the direction of
image motion, is very robust against errors in motion estimation.
Even if artificial errors are added to the true motion vectors, the
model-free motion de-blurring method E provides a sharpened image
that is in no way visually inferior to that provided under the ideal
condition that the true motion vectors are given. On the other hand,

Table 1 - Comparison of the sharpening performance of the model-based motion de-blurring methods and the model-free motion de-blurring
method in the model-error-free case: improvement in PSNR [dB] of the sharpened image over the motion-blurred test image

Abbr. Model-based / Model-free Time-evolution PDE
Energy cost function for the

data-fidelity energy term
Within the embedded
moving small image Over the whole image

A Model-based Equation 10 Bi-weight function 2.30 [dB] 1.94 [dB]

B Model-based Equation 10 Square function 2.58 [dB] 2.17 [dB]

C Model-based Equation 12 Bi-weight function 2.33 [dB] 1.99 [dB]

D Model-based Equation 12 Square function 2.43 [dB] 2.07 [dB]

E Model-free Ref. [5] & [6] None 1.94 [dB] 1.50 [dB]

19.43 [dB] 24.63 [dB]

PSNR  improvement [dB]

PSNR  [dB] of the motion-blurred test image

Motion de-blurring method

(a) Motion de-blurring
method A

(b) Motion de-blurring
method C

Figure 2 - Sharpened images when the true motion vectors are given
at all pixels

(a) Motion de-blurring
method A

(b) Motion de-blurring
method B

Figure 3 - Sharpened images when independent Gaussian noise
with zero mean and standard deviation σv of 1.25 is added to each
component of the true motion vectors at all pixels
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the model-based motion de-blurring methods A, B, which utilize
the steady-state solution of the time-evolution PDE as a sharpened
image, will produce a steady-state solution containing visible artifacts
if the standard deviation σv is rendered a large value. The model-
based motion de-blurring method B employs the square function as
the energy cost function ρd, and its update characteristics will
considerably degrade if the standard deviation σv exceeds 1.0, where
for approximately half pixels their motion vectors do not coincide
with the true motion vectors. On the other hand, in the model-based
motion de-blurring method A, which employs the bi-weight function
as the energy cost function ρd, the deterioration of its update
characteristics is fairly alleviated. When the standard deviation σv is
fixed at 1.0, within the embedded moving small image the model-
based motion de-blurring method A gives the PSNR improvement of
about 1.7 [dB] over that of the motion-blurred test image; over the
whole image its update characteristics somewhat degrade, but the
peak SN ratio PSNR [dB] of its sharpened image is improved by
about 1.2 [dB] over that of the motion-blurred test image.

As shown in Fig.3(b), the model-based motion de-blurring method
B sharpens motion blurs, but produces visible spot artifacts. On
the other hand, the model-based motion de-blurring method A
suppresses the occurrence of the visible spot artifacts considerably,

as shown in Fig.3(a). In Fig.3(b), such spot artifacts appears clearly
not only in the embedded moving small image region, but also in the
image region of the stationary background. Those spot artifacts get
the deterioration of the update characteristics over the whole image
more severer than within the embedded moving small image. In the
image region of the stationary background, as the motion-blurring
operator ϕ some operator other than the identity operator ϑ is
used, and unnecessary sharpening is performed; thus the visible
spot artifacts are generated. On the other hand, even if the moving
image region is judged to be still by mistake, no artifacts will be
produced, because the identity operator ϑ is employed as the
motion-blurring operator ϕ and hence no image sharpening will be
performed. Therefore, in practical applications of the model-based
motion de-blurring method A, in advance of the motion de-blurring,
stationary image regions, where the identity operator ϑ is employed
as the motion-blurring operator ϕ, should be detected reliably.

4.     CONCLUSIONS
For the motion de-blurring, this paper presents a model-based PDE
method minimizing the energy functional that is defined with a
spatially variant model of motion blurs. To enhance the robustness
of the model-based PDE method against model errors, we adopt
robust estimation functions for measuring energy to be minimized.
Moreover, this paper experimentally compares the model-based
PDE method with our previously presented model-free PDE method
that does not need any accurate blur model, from the point of
robustness against model errors caused by erroneous motion
estimation. Experimental simulations demonstrated that in the model-
error-free case the model-based PDE method outperforms the model-
free PDE method, but in the model-error case the latter works
better than the former. In the model-error case, to alleviate the
deterioration of the sharpening performance, in advance of the
application of the model-based PDE method, stationary image
regions should be detected reliably. At present, we are studying the
application of our motion de-blurring methods to real image
sequences taken with a digital movie camera.
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(a) Update characteristics of the
motion de-blurring method A
within the embedded moving
small image

(b) Update characteristics of
the motion de-blurring method
A over the whole image

(c) Update characteristics of the
motion de-blurring method B
within the embedded moving
small image

(d) Update characteristics of
the  mot ion de-blurr ing
method B over the whole im-
age

Figure 4 - Update characteristics of the motion de-blurring methods
A, B when independent Gaussian noise with zero mean and stan-
dard deviation σv is added to each component of the true motion
vectors at all pixels
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