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ABSTRACT
This paper presents a high-quality interpolation approach that can
adjust edge sharpness and texture intensity to reconstruct an image
according to user’s taste in picture quality. Our interpolation ap-
proach first resolves an input image I into its skeleton image U and
its texture generator V and its residual image D such that I = U·V +
D, and then interpolates each of the three components independently
with a proper interpolation method suitable to each. The skeleton
image is a bounded-variation function meaning a cartoon approxi-
mation of I, and interpolated with a super-resolution deblurring-
oversampling method that interpolates sharp edges without pro-
ducing ringing artifacts. The texture generator is an oscillatory
function representing regular distinct textures, and interpolated with
a standard linear interpolation algorithm. The residual image is a
function representing irregular weak textures and reconstruction
errors, and interpolated with a statistical re-sampling interpolation
algorithm.

1.  INTRODUCTION

Many image interpolation methods [1]~[8] have been proposed up
to now, but each of them suffers from its peculiar artifacts. The
most popular linear interpolation methods undergo aliasing distor-
tions, image blurring and jaggy artifacts. In the linear interpolation
methods, averaging across edges is usually performed, and it blurs
sharp edges. To avoid image blurs, sharpening should be introduced
into the interpolation, but it produces ringing artifacts near edges.
Many algorithms have been proposed to improve picture quality
of interpolated images. One approach to this problem is to prevent
interpolation from crossing edges, and along this line most of non-
linear interpolation methods try to interpolate images along an edge
direction [2]~[4]. These edge-directed interpolation methods usu-
ally reconstruct a sharper interpolated image, but often suffer from
severe visual degradation in fine textured image areas and provide
disordered bumpy visual impression. Iterative methods such as
PDE-based schemes [5]~[7] and projection onto convex sets (POCS)
schemes [8], constrain continuity of sharp edges and find the ap-
propriate solution through iterations. These iterative methods re-
produce sharp edges without producing ringing artifacts, but they
tend to weaken fines textures.

In this paper, by making it possible to use interpolation algo-
rithms suitable to different image ingredients simultaneously, we
construct a high-quality image interpolation approach that can ad-
just edge sharpness and texture intensity to reconstruct an image
according to user’s taste in picture quality. Our image interpolation
approach over-samples a skeleton and a texture and a residual of

each image independently. Vese and Osher proposed an algorithm
to resolve a given input image I into its skeleton image U and its
texture image V such that I U V≈ +  [9]. However, it does not
necessarily achieve satisfactory separation for really observed im-
ages [10] in that the separated factors U, V are correlated to each
other. In this paper, instead of this additive skeleton-texture sepa-
ration model, we employ a separation algorithm based on a multi-
plicative skeleton-texture separation model to apply it to the inter-
polation problem. Our interpolation approach first resolves an im-
age I to be interpolated into its skeleton image U and its texture
generator V and its residual image D such that I U V D= ⋅ + , and
then interpolates each of the three components independently with
a proper interpolation method suitable to each component. Since
the skeleton image U means a cartoon approximation of the image I
and lives in the bounded-variation function space, its proper inter-
polation method is a super-resolution deblurring-oversampling
method [5] that interpolates sharp edges without producing ringing
artifacts. The texture generator V is an oscillatory function repre-
senting regular clear textures, and its proper interpolation method
is a standard linear interpolation method. The residual image D is a
function representing irregular faint textures and reconstruction er-
rors, and its proper interpolation method is a statistical re-sam-
pling interpolation method.

2.  SKELETON - TEXTURE  SEPARATION

2.1  Image Formation Model
A simple geometrical-optical model for image formation is a result
of viewing Lambertian non-flat surface patches [11]. According to
the model, an observed image may be considered as the projection
of the real 3-D world surface normal N onto the light source direction
L, multiplied by the albedo r(x,y). The albedo r captures the
characteristics of the 3-D object’s material. The brightness of the
observed image at each pixel location (x,y) may be represented by

( ) ( ) ( )( ), , , .TI x y r x y x y= ⋅ ⋅N L                         (1)
This means that the image brightness I captures the change in mate-
rial via the albedo r that multiplies the normalized shading image Is,

( ) ( ), , .T
SI x y x y= ⋅N L                               (2)

The simplest image-formation model assumes that the albedo r is
constant within a given object in the image. Such a simple image-
formation model does not account for image textures.
2.2  Texture Models for Skeleton-Texture Separation
To account for image textures, we need to extend the geometrical-
optical image-formation model. There are two possible factors pro-
ducing textures on images: perturbations to the surface normal and
perturbations to the object’s albedo. On the other hand, scene illu-
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mination varies spatially more smoothly, and the variation makes
little contribution to image textures.
2.2.1  Additive Model and Skeleton-Texture Separation
In the case of the perturbed surface normal, like the bump mapping
technique in CG, assuming that the surface normal N within each
non-flat surface patch is written as

( ) ( )( ) ( ), , , ,Sx y x y x y= + ⋅N I P N                         (3)
where the matrix I+P is a rotation matrix and P is a perturbation
matrix changing around the null matrix 0 and I is the identity matrix
and NS is the average surface normal within the surface patch, then
the additive model for the skeleton-texture separation will be de-
rived. The additive separation-model means that the image I(x,y)
can be represented as the sum of the skeleton image U(x,y) and the
texture image V(x,y) as follows:

( ) ( ) ( ), , , .I x y U x y V x y= +                                       (4)

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

, , , ,

, , , ,

T
S

T T
S

U x y r x y x y

V x y r x y x y x y

= ⋅ ⋅

= ⋅ ⋅ ⋅

N L

N P L
In the additive separation-model, there is a cross-correlation be-
tween the skeleton image U(x,y) and the texture image V(x,y), and
the two factors U, V to be separated from I are not mutually inde-
pendent. Hence, it is not easy to separate U and V accurately ac-
cording to the additive separation-model. The existing methods for
the skeleton-texture separation are based on the additive separa-
tion-model, and they do not necessarily achieve satisfactory sepa-
ration for really observed images [10] in that the separated factors
U, V are correlated to each other.
2.2.2  Multiplicative Model and Skeleton-Texture Separation
In the second case of the perturbed albedo, assuming that the albedo
r(x,y) within each object in the image is written as

( ) ( )( ), 1 , ,Sr x y r s x y= ⋅ +                                 (5)
where the function s(x,y) is a perturbation function vibrating around
zero and rs is a given constant, then the multiplicative model for the
skeleton-texture separation will be derived. The multiplicative sepa-
ration-model means that image I(x,y) can be represented as the prod-
uct of the skeleton image U(x,y) and the texture generator V(x,y) as
follows:

( ) ( ) ( ), , , .I x y U x y V x y= ×                                             (6)

( ) ( )( ) ( ) ( ), , , , , 1 ,T
SU x y r x y V x y s x y= ⋅ ⋅ = +N L

In this case, there is no cross-correlation between the skeleton image
U(x,y) and the texture generator V(x,y), and the two factors U, V to
be separated from I are independent of each other. Therefore, from
the standpoint of the independence of the two factors U, V, the
multiplicative separation-model is considered to be more rational
than the additive separation-model.

To simplify the problem to separate the contributions of the
skeleton image U from those of the texture generator V, we should
convert the image brightness I to the logarithmic domain, so that the
product of (6) is turned into a sum,

,f u v= +                                                            (7)
log , log , log .f I u U v V= = =

2.3  Skeleton-Texture Separation Algorithm
The separation problem based on the log-transformed model of (7)
is formulated as the recovery problem that we separate the two
contributions, the log skeleton-image u and the log texture-generator
v, given the log image-brightness f. This separation problem is a
typical ill-posed problem. The separation problem takes just the
same form with the separation problem based on the additive

separation model of (4). Vese and Osher [9] proposed an algorithm
to solve the skeleton-texture separation problem based on the
additive separation-model of (4). Applying the Vese-Osher algorithm
to the separation problem of (7), we can separate the log skeleton-
image u and the log texture-generator v from the log image-brightness
f. In the following, the Vese-Osher algorithm is briefly described.

The log skeleton-image u is modeled as being composed of
multiple regions with smoothly-varying brightness divided by
discontinuous boundaries, and the space of the log skeleton-image u
is mathematically formulated as the BV (Bounded-Variation Function
Space) [12]. The energy of the log skeleton-image u is defined as the
TV (Total Variation) norm J(u), as follows:

( ) .J u u dx dy= ∇∫                                        (8)
On the other hand, the log texture-generator v is modeled as an
oscillatory function vibrating around zero, and the space of the log
texture-generator v is formulated as the G space for oscillating
pattern, which was recently introduced by Meyer [13]. The G
space is very close to the dual space of the BV space [10]. The G
space is defined as the Banach space consisting of all functions that
can be written as

( ) ( ) ( )1 2, , , ,x yv x y g x y g x y= ∂ + ∂                  (9)

( )2
1 2, ,g g L∞∈

where the two functions g1, g2 are referred to as the oscillating
mother functions. The energy of the log texture-generator v is defined
as the G norm ||v||G, as follows:

( ) ( )
1 2

2 2
1 2 1 2,

inf ; ,x yG g g L
v g g v g g

∞

 = + = ∂ + ∂ 
 

      (10)

where the infimum is computed over all possible decompositions
(9) of v.

Under the above assumptions, the separation problem of (7) is
formulated as the variational problem minimizing the following
energy functional E(u,v):

( ) ( ) 2

2
, ,

G
E u v J u v f u vµ λ= + ⋅ + ⋅ − −               (11)

where λ, µ are positive parameters to be tuned optimally and the
third energy term is a data-fidelity term that ensures f is very close
to the sum of u and v. However, this separation algorithm is quite
difficult to compute, because the computation of the G norm is not
easy. To make the variational problem of (11) easier to solve, Vese
and Osher replaced the G norm by the negative Sobolev norm, and
reformulated the separation problem as the variational problem
minimizing the following energy functional F(u, g1, g2):

( ) ( ) ( )

( )

2 2
1 2 1 2

2

1 2

, ,

.x y

F u g g u dx dy g g dx dy

f u g g dx dy

µ

λ

= ∇ + ⋅ +

+ ⋅ − − ∂ − ∂

∫ ∫
∫

        (12)

The corresponding Euler-Lagrange equations are as follows:

1 2
1 ,

2x y
uu f g g div
uλ

 ∇
= − ∂ − ∂ +   ∇ 

                      (13)

1
1 22 2

1 2

2 ( ) ,x xx xy
g u f g g

g g
µ λ  = ∂ − + ∂ + ∂ +         (14)

2
1 22 2

1 2

2 ( ) .y xy yy
g u f g g

g g
µ λ  = ∂ − + ∂ + ∂ +         (15)

The skeleton image U(x,y) is transformed from u(x,y) as follows:

( ) ( )( ), exp , ,U x y u x y=                                                       (16)
whereas the texture generator V(x,y) is transformed from g1(x,y),
g2(x,y) as follows:

( ) ( )( ) ( ) ( )( )1 2, exp , exp , , .x yV x y v x y g x y g x y= = ∂ + ∂      (17)
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The two reconstructed functions U(x,y), V(x,y) are then multiplied
together to obtain the reconstruction of the input image I(x,y).
However, the reconstructed image brightness is not necessarily equal
to the original image brightness. Then, we define a residual image
D(x,y) as follows:

( ) ( ) ( ) ( ), , , , .D x y I x y U x y V x y= − ⋅                   (18)
The residual image D captures random textures and reconstruction
errors.

As to the extension of the separation algorithm to color images,
in this paper we employ the most straightforward approach in
which all the color channels are treated independently.
2.4  Separation Results
Separation simulations using natural color images show that the
skeleton-texture separation method based on the multiplicative
model is superior to that based on the additive model in that faster
convergence is achieved and parameter setting is much easier. Fig.1

and Fig.2 show the separated skeletons U and the separated texture-
generators V given by the skeleton-texture separation method based
on the multiplicative model. In these figures, the recovered image
U V⋅  is also shown. In Fig.1 and Fig.2, textures are almost
completely removed from the skeleton images in which objects’
boundaries are sharp and not blurred at all.

3.  IMAGE  INTERPOLATION  BASED  ON  THE
SKELETON - TEXTURE  SEPARATION

The basic idea of our image interpolation approach is as follows.
Applying the skeleton-texture separation algorithm based on the
multiplicative separation-model to an image I to be interpolated,
first we decompose the image I as follows:

( ) ( ) ( ) ( ), , , , .I x y U x y V x y D x y= ⋅ +                     (19)
Then we interpolate each of the three ingredients independently

(a) Input image

(c)  Skeleton image U

(b) Recovered image U+V
PSNR = 38.23 [dB]

(d) Texture generator
      200·(V-1.0)+128

(b) Recovered image U·V
PSNR = 37.47 [dB]

(c) Skeleton image U (d) Texture generator
      200·(V-1.0)+128

Figure 1 - Skeleton image U, the texture generator V, the residual
image D and the recovered image given by the method based on the
multiplicative model (λ=2.0, µ=0.01)

Figure 2 - Skeleton image U, the texture generator V, the residual
image D and the recovered image given by the method based on the
multiplicative model (λ=2.0, µ=0.01)

(a) Input image

(d) Residual image
      D+128

(d) Residual image
      D+128
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with a proper interpolation method suitable to each ingredient.
Producing magnified ingredients, U’, V’, D’, we reconstruct an
interpolated image I’ as follows:

( ) ( ) ( ) ( ), , , , .I x y U x y V x y D x y′ ′ ′ ′= ⋅ +                   (20)
In this reconstruction process, we can take account of use’s taste

in picture quality. When a user prefers a sharp image with high
contrast, for instance first the texture generator V is enhanced and
then an interpolated image I’ is produced as follows:

( ) ( ) ( ) ( ), , , , , 1 .I x y U x y V x y D x yα α′′ ′ ′= ⋅ + ≥          (21)

                 ( )Interpolation Interpolation expV V vα
α α′  = =  ⋅   

On the other hand, when a user prefers a soft image with moderate
contrast, for instance the interpolated residual image D’ is reduced
and thus an interpolated image I’ is produced as follows:

( ) ( ) ( ) ( ), , , , , 0 1.I x y U x y V x y D x yβ β′ ′ ′ ′= ⋅ + ⋅ ≤ ≤    (22)
We use a proper interpolation method suitable to each gradient in

the multiplicative separation-model. The texture generator V is an
oscillatory function representing regular clear textures, and hence
its proper interpolation method is a standard linear interpolation
method. The residual image D is a function representing irregular
faint textures and reconstruction errors, and hence its proper
interpolation method is a statistical re-sampling interpolation
method. The statistical re-sampling method first computes a mean
and a variance of residual signals within a local neighboring region
around a pixel to be interpolated, samples a Gaussian random variable
with the mean and the variance and then inserts it into D’ as an
interpolation value of the pixel.

On the other hand, the skeleton image U corresponds to a cartoon
approximation of the image I and lives in the bounded-variation
function space. Hence, its proper interpolation method should
preserve discontinuous jumps without producing blurs and ringing
artifacts near the jumps. To suppress the ringing artifacts, one of
the most effective approaches is to introduce into the interpolation
approach the idea of the super-resolution restoring spatial frequency
components higher than the Nyquist frequency. Recently,
Malgouyres and Guichard [5] formulated the deblurring-
oversampling problem with the super-resolution as a variational
problem with the TV energy [12]. They introduced the sub-sampling
into the TV variational method for the deblurring, and studied the
minimization of the energy functional:

( ) ( ) ( )2

, 2
, , 0 .m nG U U m n U J Uρ γ γ′ ′ ′= ∗ − + ⋅ >       (23)

They proved that for a cylindrical function whose DFT is supported
by a line, the minimization of the energy functional of (23) admits
a solution cylindrical along the same line. The cylindrical function
mathematically models the 1-D structure of a step edge. The TV-
based deblurring-oversampling method of (23) restores frequency
components higher than the Nyquist frequency from observed blurry
frequency components so that it can enlarge skeleton images while
preserving structures defined as the cylindrical functions, and thus
it can preserve discontinuous jumps without producing ringing
artifacts. Therefore, this super-resolution deblurring-oversampling
method is the most proper for the interpolation of skeleton images.

4.  INTERPOLATION  RESULTS

Fig.3 shows interpolated images given by our adaptable image
interpolation method. We produce interpolation images, shown in
Fig. 3, by changing the parameter α in the interpolation scheme of
(21). In Fig.3, for comparison, images interpolated by the pixel

replication method, the bicubic method and the super-resolution
deblurring-oversampling method [5] are shown. As shown in Fig.3,
our interpolation method produces sharper edges and suppresses
jaggy artifacts better than the two classical methods, the pixel
replication method and the bicubic method. When instead of
separating skeleton and texture from an image we apply the super-
resolution deblurring-oversampling method directly to the image
interpolation, as shown in Fig.3(d) fine textures tend to be eliminated
from its recovered image, and the interpolated image gives unnatural
flat impression. On the other hand, our interpolation method
preserves fine textures. Furthermore, controlling the parameter α,
our interpolation method can adjust edge sharpness and texture
contrast to reconstruct a high quality image according to user’s
taste in picture quality.

5.  CONCLUSIONS
We make it possible to use interpolation algorithms suitable to the
skeleton image, the texture generator, and the residual image respec-
tively, and thus form a high-quality image interpolation method
that controls edge sharpness and texture intensity according to user’s
taste in picture quality. Simulations conducted on real images show
the merits of our interpolation approach.
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(f) Interpolated image by our method
of (21): α=1.4

Figure 3 - Portions of the parrot image magnified 4x using our interpolation method

(e) Interpolated image by our method
of (21): α=1.0

(c) Interpolated image by the bicubic
method

(b) Interpolated image by the pixel replica-
tion method

(d) Interpolated image by the super-resolu-
tion deblurring-oversampling method [5]

(a) Input image
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