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ABSTRACT
This paper addresses the stochastic Cramer-Rao bound
(CRB) pertaining to the joint estimation of the carrier fre-
quency offset, the carrier phase and the noise and data pow-
ers of binary phase-shift keying (BPSK), minimum shift key-
ing (MSK) and quaternary phase-shift keying (QPSK) mod-
ulated signals corrupted by additive white circular Gaussian
noise. Because the associated models are governed by simple
Gaussian mixture distributions, an explicit expression of the
Fisher Information matrix is given and an explicit expression
for the stochastic CRB of these four parameters are deduced.
Refined expressions for low and high-SNR are presented as
well. Finally, our proposed analytical expressions are numer-
ically compared with the approximate expressions previously
given in the literature.

1. INTRODUCTION

The stochastic Cramer-Rao bound (CRB) is a well known
lower bound on the variance of any unbiased estimate, and
as such, serves as useful benchmark for practical estimators.
Unfortunately, the evaluation of this CRB is mathematically
quite difficult when the observed signal contains, in addition
to the parameters to be estimated, random discrete data and
random noise. A typical example of such a situation that has
been studied by many authors (see e.g., [1] and the references
therein) is the observation of noisy linearly modulated wave-
forms that are a function of deterministic parameters such
that the time delay, the carrier frequency offset, the carrier
phase, noise and data powers, as well as the data symbol se-
quence. Because the analytical computation of this CRB has
been considered to be unfeasible, a modified CRB (MCRB)
which is much simpler to evaluate than the true CRB has
been introduced in [2]. But this MCRB may not be as tight
as the true CRB [3] for joint estimation of all parameters.
To circumvent this difficulty, asymptotic expressions at low
[4] or high [5] signal-to-noise ratio (SNR) have been inves-
tigated. But unfortunately, these asymptotic expressions do
not apply at moderate SNR, for which only combined ana-
lytical/numerical (see e.g., [5, 6, 1]) approaches are available
until now.

In this paper, we investigate an analytical expression of
the stochastic CRB associated with the joint estimation of
the carrier frequency offset, the carrier phase and the noise
and data powers of BPSK, QPSK or MSK modulated signals
corrupted by additive white circular Gaussian noise, which is
valid for arbitrary SNR. This paper is organized as follows.
After formulating the problem in Section 2, an explicit ex-
pression of the Fisher information matrix (FIM) associated
with all the deterministic parameters is given in Section 3.

Because the carrier frequency offset and the carrier phase pa-
rameters are decoupled from the signal noise and data pow-
ers parameters, simple explicit expressions for the stochastic
CRB of these four parameters are deduced. Refined expres-
sions for low and high-SNR are presented as well. Finally,
in Section 4, our proposed analytical expressions are numer-
ically compared with the previously given approximate ex-
pressions.

2. PROBLEM FORMULATION

Consider BPSK, QPSK or MSK modulated signals. The re-
ceived signals are bandpass filtered and after down-shifting
the signal to baseband, the in-phase and quadrature com-
ponents are paired to obtain complex signals. We assume
Nyquist shaping and ideal sample timing so that the inter-
symbol interference at each symbol spaced sampling in-
stance can be ignored. In the presence of frequency offset
and carrier phase, the signals at the output of the matched fil-
ters yield the observation vector y = (yk0 , ...,yk0+K−1), with

yk = askei2πkν eiφ +nk,

for k = k0, ...,k0 + K−1. {sk} is a sequence of independent
identically distributed (IID) data symbols taking values ±1
[resp. ±√2/2± i

√
2/2] with equal probabilities for BPSK

[resp., QPSK] modulations and for MSK modulations are de-
fined by sk+1 = iskck where ck is a sequence of independent
BPSK symbols with equal probabilities where the original
value sk0 remains unspecified in the set {+1,+i,−1,−i}.
The deterministic unknown parameters a, ν and φ repre-
sent the amplitude, the carrier frequency offset normalized
to the symbol rate and the carrier phase at k = 0. Finally, the
sequence {nk} consists of IID zero-mean complex circular
Gaussian noise variables1 of variance σ2. The symbols sk
are assumed to be independent from nk.

If no a priori information is available concerning the
transmitted symbols, the distribution of y is parameterized
by θ def= (ν ,φ ,a,σ). We note that the MSK modulation
is modelled equivalently (see e.g., [7]) by sk = ik−k0bksk0
where bk is another sequence of independent BPSK symbols
{−1,+1} with equal probabilities. Consequently, similarly
to the BPSK and QPSK modulations, (yk)k=k0,...,k0+K−1 are

1Note that many papers consider the parameters a2 and σ2 denoted usu-
ally as the symbol energy Es and the noise power spectral density N0 as
known. They usually suppose a unit variance for the noise and use the ra-

tio ε def= (Es/N0)1/2 as the modulation amplitude, but in practice these two
parameters are unknown.
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independently non-identically distributed along the follow-
ing mixed circular Gaussian distribution:

p(yk;θ) =
1

Lπσ2

L

∑
l=1

exp
(
−|yk−asl,kei2πkν eiφ |2

σ2

)
, (1)

with sl,k = ±1 (L = 2), sl,k = ±√2/2± i
√

2/2 (L = 4) or
sl,k = ik−k0 blsk0 with bl =±1 (L = 2) associated with BPSK,
QPSK or MSK modulations, respectively.

3. STOCHASTIC CRB: ANALYTICAL RESULTS

3.1 General closed-form expression

Using the independence of the random variables yk, the
Fisher information matrices (FIM) is given (elementwise) by:

(IF)i, j =−
k0+K−1

∑
k=k0

E
(

∂ 2ln p(yk;θ)
∂θi∂θ j

)
i, j = 1, . . . ,4,

(2)
where the PDF’s (1) take the following forms:

p(yk;θ) =
1

πσ2 exp
(
−|yk|2 +a2

σ2

)
c(yk),2

where

c(yk) = cosh
( a

σ2 g1(yk)
)

= cosh
(

a
σ2
√

2
g1(yk)

)
cosh

(
a

σ2
√

2
g2(yk)

)

= cosh
( a

σ2 g3(yk)
)

for the BPSK, QPSK and MSK modulations respectively,
with g1(yk)

def= 2ℜ(ei2πkν eiφ y∗k), g2(yk)
def= 2ℑ(ei2πkν eiφ y∗k)

and g3(yk)
def= 2ℜ(ik−k0ei2πkν eiφ sk0y∗k). Extending the ap-

proach used in [8] for the parameters a and σ only and in
[9] for the direction of arrival (DOA) parameters, the follow-
ing lemma is proved in Appendix A:

Lemma 1 The parameter θ = (ν ,φ ,a,σ) is partitioned in
two decoupled parameters (ν ,φ) and (a,σ) in the FIM as-
sociated with the BPSK, QPSK and MSK modulations:

IBPSK = IMSK =

[
I(1)

B O
O I(2)

B

]

IQPSK =

[
I(1)

Q O

O I(2)
Q

]

2Note that this product form does not extend to arbitray QAM modula-
tion (see e.g., [6, rel. (41)] for the 16QAM modulation.

with

I(1)
B = 2ρ2(1− f1(ρ))[

(2π)2 ∑k0+K−1
k=k0

k2 2π ∑k0+K−1
k=k0

k
2π ∑k0+K−1

k=k0
k K

]

I(2)
B = 2K

ρ
a2

[
1− f2(ρ) 2

√ρ f2(ρ)
2
√ρ f2(ρ) 2(1−2ρ f2(ρ))

]

I(1)
Q = 2ρ2(1− (1+ρ) f1(

ρ
2

))
[

(2π)2 ∑k0+K−1
k=k0

k2 2π ∑k0+K−1
k=k0

k
2π ∑k0+K−1

k=k0
k K

]

I(2)
Q = 2K

ρ
a2

[
1− f2(

ρ
2 ) 2

√ρ f2(
ρ
2 )

2
√ρ f2(

ρ
2 ) 2(1−2ρ f2(

ρ
2 ))

]

where ρ is the SNR a2

σ2 and f1 and f2 are the following de-
creasing functions of ρ:

f1(ρ) def=
2e−ρ
√

2π

∫ +∞

0

e−
u2
2

cosh(u
√

2ρ)
du,

f2(ρ) def=
2e−ρ
√

2π

∫ +∞

0

u2e−
u2
2

cosh(u
√

2ρ)
du.

The determinants of I(1)
B and I(1)

Q do not depend on the time
k0 at which the first sample is taken and consequently the
CRB for the frequency does not depend on it either, but the
CRB for the phase does. The minimum value for this CRB
is attained for k0 = −(K − 1)/2. This particular choice of
k0 renders I(1)

B and I(1)
Q diagonal and we obtain in this case

the following result, where the MCRB are straightforwardly
derived from [2]:

MCRB(θi) =
1

E
(

∂ 2ln p(y/s;θ)
∂θ2

i

) , i = 1, . . . ,4.

Result 1 The CRB for the joint estimation of the parameters
(ν ,φ ,a,σ) associated with the BPSK and MSK modulations
are given by:

CRB(ν) =
6

(2π)2K(K2−1)ρ(1− f1(ρ))

= MCRB(ν)
(

1
1− f1(ρ)

)
(3)

CRB(φ) =
1

2Kρ(1− f1(ρ))

= MCRB(φ)
(

1
1− f1(ρ)

)
(4)

CRB(a) =
a2(1−2ρ f2(ρ))

2Kρ(1− f2(ρ)−2ρ f2(ρ))

= MCRB(a)
(

1−2ρ f2(ρ)
1− f2(ρ)−2ρ f2(ρ)

)
(5)

CRB(σ) =
a2(1− f2(ρ))

4Kρ(1− f2(ρ)−2ρ f2(ρ))

= MCRB(σ)
(

1−2ρ f2(ρ)
1− f2(ρ)−2ρ f2(ρ)

)
. (6)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



The CRBs associated with the QPSK modulation are ob-
tained by replacing f1(ρ) and f2(ρ) by, respectively, (1 +
ρ) f1(

ρ
2 ) and f2(

ρ
2 ) in (3), (4), (5) and (6).

Consequently, for high SNR, the asymptotic CRB coincides
with the MCRB. This extends a property proved in [3] for a
scalar parameter only.

3.2 Low-SNR expression
For low SNR, f1(ρ) and f2(ρ) approach 1. We resort to a
Taylor series expansion of these functions obtained by ex-
panding e−ρ and cosh(u

√
2ρ) around ρ = 0. Then, using the

values (2n)!/2nn! of the moments of order 2n of zero-mean
unit variance Gaussian random variables, we obtain after te-
dious, but straightforward algebraic manipulations:

f1(ρ) = 1−2ρ +4ρ2− 40
3

ρ3 +
208

3
ρ4 +o(ρ4),

f2(ρ) = 1−4ρ +16ρ2− 256
3

ρ3 +
12544

21
ρ4 +o(ρ4).

Inserting these expansions in Result 1 allows us to prove the
following result:

Result 2 The CRB for the joint estimation of the parameters
(ν ,φ ,a,σ) associated with the BPSK, MSK and QPSK mod-
ulations are given for low SNR by:

CRB(ν) =
6

(2π)2K(K2−1)
L!

L2ρL (1+Lρ +o(ρ))

= MCRB(ν)
L!

L2ρL−1 (1+Lρ +o(ρ)) (7)

CRB(φ) =
1

2K
L!

L2ρL (1+Lρ +o(ρ))

= MCRB(φ)
L!

L2ρL−1 (1+Lρ +o(ρ)) (8)

CRB(a) =
a2

KαLρL (1+Lρ +o(ρ))

= MCRB(a)
2

αLρL−1 (1+Lρ +o(ρ)) (9)

CRB(σ) =
a2

KβLρL−1 (1+ γLρ3−L/2 +o(ρ3−L/2))

= MCRB(σ)
4

βLρL−2 (1+ γLρ3−L/2 +o(ρ3−L/2)),

(10)

with L = 2 [resp. 4] for the BPSK and the MSK [resp. QPSK]
modulation and α2 = 4, α4 = 16/3, β2 = 2, β4 = 16/3, γ2 =
−16/3 and γ4 = 4.

We note that (7) and (8) for BPSK and QPSK modulations
are refinements of the expressions of CRB(ν) and CRB(φ)
given in [4].

3.3 High-SNR expression
For high SNR, the MCRB approaches the CRB at the same
speed that f1(ρ) and f2(ρ) approach 0. Because we prove
in Appendix B that these functions are bounded above by
e−ρ√πρ and more precisely that f1(ρ)/ e−ρ ln2√π p tends to 1 when

ρ tends to ∞, the CRB are practically equal to the MCRB
for moderate SNR. For example: ρ = 2 (3dB) [resp. ρ = 4
(6dB)] gives the upper bound 0.05 [resp. 0.005] for f1(ρ)
and f2(ρ) and consequently the ratios CRB/MCRB are of
the same order of magnitude from these values of SNR.

4. NUMERICAL RESULTS

The analytical Result 1 is numerically compared with the ap-
proximations given in Result 2 and to the approximations
given in [4] for CRB(ν) and CRB(φ) of BPSK and QPSK
modulations at low SNR.

In these conditions, we see good agreement between the
numerical values derived from Results 1 and 2 in a large
domain of low SNR. Furthermore, we note that the ratio
CRB/MCRB is unbounded except for the noise power of
BPSK and MSK modulations for which it tends to 2 when
the SNR tends to 0.
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Fig.1 Ratio CRB(ν)/MCRB(ν)=CRB(φ )/MCRB(φ ) at low SNR: (a) exact
value given by (3), (4), (b) approximate value given by (7), (8), (c) approxi-
mate value given in [4].
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Fig.2 Ratio CRB(a)/MCRB(a) at low SNR: (a) exact value given by (5),
(b) approximate value given by (9).
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Fig.3 Ratio CRB(σ )/MCRB(σ ) at low SNR: (a) exact value given by (6),
(b) approximate value given by (10).

A. APPENDIX: PROOF OF LEMMA 1

To evaluate the FIM (2) for the BPSK modulation, we take
partial derivatives as follows:

∂ 2ln p(yk;θ)
∂φ 2 =

a2g2
2(yk)

σ4
1

cosh2
(

ag1(yk)
σ2

)

− ag1(yk)
σ2 tanh

(
ag1(yk)

σ2

)

∂ 2ln p(yk;θ)
∂ν2 = (2πk)2 ∂ 2ln p(yk;θ)

∂φ 2

∂ 2ln p(yk;θ)
∂φ∂ν

= (2πk)
∂ 2ln p(yk;θ)

∂φ 2

∂ 2ln p(yk;θ)
∂a2 = − 2

σ2 +
g2

1(yk)
σ4

1

cosh2
(

ag1(yk)
σ2

)

∂ 2ln p(yk;θ)
∂σ2 =

2σ2−6(a2 + |yk|2)
σ4

+
4a2g2

1(yk)
σ6

1

cosh2
(

ag1(yk)
σ2

)

+
6ag1(yk)

σ4 tanh
(

ag1(yk)
σ2

)

∂ 2ln p(yk;θ)
∂a∂σ

=
4a
σ3 −

2ag2
1(yk)

σ5
1

cosh2
(

ag1(yk)
σ2

)

− 2g1(yk)
σ3 tanh

(
ag1(yk)

σ2

)

∂ 2ln p(yk;θ)
∂a∂φ

= −ag1(yk)g2(yk)
σ4

1

cosh2
(

ag1(yk)
σ2

)

− g2(yk)
σ2 tanh

(
ag1(yk)

σ2

)

∂ 2ln p(yk;θ)
∂a∂ν

= (2πk)
∂ 2ln p(yk;θ)

∂a∂φ
∂ 2ln p(yk;θ)

∂σ∂φ
=

2a2g1(yk)g2(yk)
σ5

1

cosh2
(

ag1(yk)
σ2

)

+
2ag2(yk)

σ3 tanh
(

ag1(yk)
σ2

)

∂ 2ln p(yk;θ)
∂σ∂ν

= (2πk)
∂ 2ln p(yk;θ)

∂σ∂φ
.

Using the regularity condition ∂
∂θi

∫
p(yk;θ)dyk =

∫ ∂ p(yk;θ)
∂θi

dyk which is fulfilled for finite mixtures of Gaussian

distributions, the following property holds: E
(

∂ ln p(yk;θ)
∂a

)
=

0. With ∂ ln p(yk;θ)
∂a =− 2a

σ2 + g1(yk)
σ2 tanh

(
ag1(yk)

σ2

)
, we obtain

E
(

g1(yk)tanh
(

ag1(yk)
σ2

))
= 2a.

This identity enables us to straightforwardly derive
the terms of I(2)

B thanks to the definition of the function

f2(ρ) = E

(
g2

1(yk)
2σ2

1
cosh2

(
ag1(yk)

σ2

)

)
, where the r.v. g1(yk)

is equally weighted mixed Gaussian (N (−2a;2σ2) and
N (+2a;2σ2)).

To evaluate I(1)
B , we note that g1(yk) =

2ask +
(
ei2πkν eiφ n∗k + e−i2πkν e−iφ nk

)
and g2(yk) =

−i
(
ei2πkν eiφ n∗k − e−i2πkν e−iφ nk

)
. Because sk and

nk are independent and the two Gaussian r.v.
ei2πkν eiφ n∗k + e−i2πkν e−iφ nk and ei2πkν eiφ n∗k − e−i2πkν e−iφ nk
are uncorrelated and therefore independent, the three r.v. sk,
ei2πkν eiφ n∗k + e−i2πkν e−iφ nk and ei2πkν eiφ n∗k − e−i2πkν e−iφ nk
are collectively independent and thus g1(yk) and g2(yk) are
independent. This implies that the parameters (ν ,φ) and
(a,σ) are decoupled in the FIM. Using the definition of the

function f1(ρ) = E

(
1

cosh2
(

ag1(yk)
σ2

)

)
, the terms of I(1)

B are

derived.
For the MSK modulation, the derivations follow the same

lines, replacing g1(yk) by g3(yk).
Finally for the QPSK modulation, evaluating the partial

derivatives ∂ 2ln p(yk;Θ)
∂θi∂θ j

and taking their expectation are de-
rived in the same way, provided the log-likelihoods associ-
ated with g1(yk) and g2(yk) are gathered, and the hypothesis
of independence of ℜ(sk) and ℑ(sk) is taken into account.

B. APPENDIX

For high SNR, using the inequality

1
cosh(u

√
2ρ)

< 2e−u
√

2ρ ,

we obtain after simple algebraic manipulations:

f1(ρ) < 4Q(
√

2ρ) (11)
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and

f2(ρ) < 4
(

(2ρ +1))Q(
√

2ρ)−
√

2ρ√
2π

e−ρ
)

, (12)

where Q(x) is the error function
∫ +∞

x
1√
2π e−

u2
2 du classically

bounded above by 1
x
√

2π e−
x2
2 . Applying this upper bound in

(11) and (12) gives: f1(ρ) < e−ρ√πρ and f2(ρ) < e−ρ√πρ . To spec-
ify the upper bound of f1(ρ), we use the following expansion

1
cosh(u

√
2ρ)

= 2e−u
√

2ρ(1+ e−u
√

2ρ)−1

= 2
+∞

∑
k=0

(−1)ke−(k+1)u
√

2ρ .

Inserting this into f1(ρ), we obtain after simple algebraic
manipulations the following alternating expansion:

f1(ρ) = 4
+∞

∑
k=0

(−1)keρ [(k+1)2−1]Q[(k +1)
√

2ρ ] f2(ρ). (13)

Using the standard bounds 1
x
√

2π (1 − 1
x2 )e−

x2
2 ≤ Q(x) ≤

1
x
√

2π e−
x2
2 and ln2 =−∑∞

k=1
(−1)k

k in (13) proves after simple

algebraic manipulations that f1(ρ)/ e−ρ ln2√π p tends to 1 when ρ
tends to ∞.
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