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ABSTRACT 
In this paper,  distributed particle filter for target tracking in 
wireless sensor network was proposed. The key issue of dis-
tributed particle filter is sensor selection. Because of the 
limited resources, the fusion of the observation by the se-
lected sensor must reduce uncertainty of the target state 
distribution without receiving any actual sensor observa-
tions. Our sensor selection is computationally much simpler 
than other sensor selection approaches. Simulation results 
show that our approach can reach very well performance 
for target tracking. 

1. INTRODUCTION1 

Target tracking is one of the most important applications of 
wireless sensor network. The limited on-board resources of 
sensor node and the limited wireless bandwidth are the ma-
jor constraints of performing target tracking in wireless sen-
sor network. In order to save resources, target tracking 
should be implemented in a distributed way. That is to say, 
traditional centralized processing method is not suitable to 
the need of sensor network. But how to implement the target 
tracking in distributed way? Due to the perfect performance 
in target tracking area by particle filter, we discussed below 
how to implement distributed particle filter in wireless sen-
sor network. 
Contrary to the traditional processing methods, which have a 
processing centre, there is not any processing centre in a 
distributed particle filter. In distributed particle filter, the 
task of target tracking is performed by the collaboration of 
sensor nodes. In order to perform tracking task, the sensor 
node that takes the responsibility of implement the particle 
filter at current time must report his results to one of its 
neighbours. There are many neighbour nodes, which one 
will become the processing unit at the next time? So we face 
the sensor selection problem: how to select the most effec-
tive sensor so as to reach a good performance of target track-
ing. One criterion for sensor selection is based on informa-
tion-theoretic. From the information-theoretic point of view, 
different sensor contributes different information gains to 
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the uncertainty of target state distribution. Selecting the most 
informative sensor can reduce the most uncertainty of target 
state and do not use more resources than necessary. Trough 
the sensor selection, we can track the target in a distributed 
way and therefore prolong the life of sensor network. 
There have been several investigations into information-
theoretic methods to implement sensor selection. Zhao et. al. 
[1][2] have used the mutual information between the pre-
dicted sensor observation and the current target state distri-
bution to select the most informative sensor. Wang and 
Yao[3] proposed a novel entropy-based heuristic approach 
for sensor selection based on their experiments. But both the 
methods above employed the grid-based methods to perform 
sensor selection. To our best knowledge, the complexity of 
grid-based methods increases when the dimension of target 
state space increases. So if the dimension of state space is 
much larger than there, the computation complexity will be 
beyond the capacity of sensor nodes. In this paper, we pro-
posed a particle filter based method to perform sensor selec-
tion. It is computationally more efficient than grid-based 
methods proposed in[1][2][3]. 
The rest of this paper is organized as followed. Section 2 
discusses the distributed particle filter for target tracking in 
wireless sensor network. Section 3 describes our sensor se-
lection methods and compares its computation complexity to 
the grid-based methods in[1][2][3]. Section 4 analyzes the 
performance of our distributed particle filter for target track-
ing by computer simulations. Section 5 makes a conclusion 
of this paper. 

2.  DISTRIBUTED PARTICLE FILTER FOR 
TARGET TRACKING 

In this section, we discuss the distributed particle filter for 
target tracking in wireless sensor network.  
Let t{x ,t=0,1,2...} denote the state of target at timet , 
and t{z ,t=1,2,3...} denote the corresponding measure-
ment of sensor nodes. Then, the dynamic equation of the 
target state and the measurement equation of sensor nodes 
can be described by: 

( ) tf u= +t+1 tx x                           (1) 
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Table 1: Distributed Particle Filter

( )t tz g v= +tx                             (2) 

where function ( )f x  and ( )g x  may be linear or nonlinear. 
In this paper, we consider that ( )g x  is nonlinear. State 
noise tu ~ (0, )N Q  is white and stationary. Measurement 
noise tv ~ (0, )N R  is white and stationary, and independent 
of the state noise tu . 
The essence of particle filter is to approximate the posterior 
target state distribution by a series of weighted samples of 
state. Assuming that we can obtain the approximation of 
posterior target state distribution at time 1t − , denoting as 

1 1{ , }i N
t ix w − =

i
t-1 , where N  is the number of particles. We 

name the processing sensor node at time 1t −  as leader 
node. According to 1 1{ , }i N

t ix w − =
i
t-1 , leader node can obtain 

the estimated value 1 1 1
1

ˆ
N

i i
t t t

i

x w x− − −
=

=∑  of target position at 

time 1t −  under MMSE criterion. According to this esti-
mated value and some information of sensor node, we can 
select one sensor node among leader’s neighbours to be the 
leader at next time, then leader can transmit the information 
of target state to the next leader. After receiving the infor-
mation from the former leader, the leader at time t  can up-
date the target state using its measurement. We will discuss 
sensor selection algorithm in detail in Section 3. Table I 
describes the algorithm of distributed particle filter for tar-
get tracking. Where (.)q  is important function, / 3thN N= . 

3. SENSOR SELECTION 

In this section, we discuss our sensor selection algorithm in 
detail. Subsection 3.1 formulates the sensor selection prob-
lem for target tracking. Subsection 3.2 discusses our sensor 
selection method. Subsection 3.3 validates our methods by 
computer simulation. Subsection 3.4 compares the com-

plexity of our method to that of other sensor selection 
methods. 

3.1 Sensor Selection Problem 
In the distributed target tracking, the uncertainty of target 
state is reduced by repeatedly selecting sensor with maxi-
mal expected information gain, the observation of selected 
sensor is incorporated into the posterior distribution of tar-
get state by particle filter to increase tracking performance. 
Due to the limited resources of sensor node, the key issue is 
how to evaluate the information gain of different sensor 
nodes without actually retrieving sensor measurements. 
We can formulate this sensor selection problem for target 
tracking as follows. Given  
(1) prior distribution of target  
(2) positions of sensor nodes  
(3) measurement model of sensor: ( | )t tp z x   
(4) dynamic model of target: 1( | )t tp x x+  
The objective of sensor selection is to find the sensor k  
whose measurement 1

k
tz +  maximizes the mutual informa-

tion 1 1( ; | )k
t t tI x z z+ + : 

1 1
ˆ arg max ( ; | )k

k s t t tk I x z z∈ + +=                (3) 

Where 

( ; | )1 1
kI x z zt t t+ +

1 1

( , | )1 1( , | ) log1 1
( | ) ( | )1 1

k
t t

kp x z zk t t tp x z z dx dzt t t kp x z p z zt t t t
+ +

+ += ∫ + +
+ +

 
and s  is the set of sensor nodes. 

1[{ , } ]i i N
t t ix w = ＝ 1 1 1[{ , } , ]i i N

t t i tDPF x w z− − =  

Step 1：sample  i
tx ~ 1( | , )i

t t tq x x z−  1, 2...i N=  

Step 2：decide the important weighted 1
1

1

( | ) ( | )ˆ ˆ
( | , )

i i i
i i t t t t
t t i i

t t t

p z x p x x
w w

q x x z
−

−
−

=   1, 2...i N=  

normalize ˆ i
tw  to be i

tw  1, 2...i N= ， 

decide 
2

1

1

( )
eff N

i
t

i

N
w

=

=

∑

)
 

step 3：if effN
)

< thN ， then resample 1{ , }i i N
t t ix w = ，or turn to next step 

step 4：select the next leader by sensor selection algorithm，then transmit 1{ , }i i N
t t ix w =  to the next leader 
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3.2 Particle Filter based Sensor Selection 
There have been several articles[1][2][3] to solve the sensor 
selection problem. But to our best knowledge, they all used 
the grid-based method to perform sensor selection. When 
the dimension of target state is increasing, the complexity of 
grid-based method is increasing quickly. In order to solve 
this problem, we proposed a particle filter based new 
method to perform sensor selection. 
In practical, if we can decide the 1 1( , | )k

t t tp x z z+ + , 

1( | )t tp x z+  and 1( | )k
t tp z z+ , we can determine the equation 

(3). According to particle filter, we can obtain 

1

( | ) ( )
N

i i
t t t t t

i

p x z w x xδ
=

≈ −∑                 (4) 

and we know that 

1 1( | ) ( | ) ( | )t t t t t t tp x z p x x p x z dx+ += ∫             (5) 

substituting equation (4) into equation (5), we have 

1 1
1

( | ) ( | )
N

i i
t t t t t

i

p x z w p x x+ +
=

=∑                 (6) 

According to MMSE criterion, we can obtain that the esti-

mated state at time t  is 
1

ˆ
N

i i
t t t

i

x w x
=

=∑ .Using the dynamic 

equation (1), we can obtain N  samples of target state at 
time 1t + , which are denoted by 1 1{ }i N

t ix + = . Then we have 

1 1( , | )i k
t t tp x z z+ + 1 1 1( | ) ( | )k i i

t t t tp z x p x z+ + +=         (7) 

Let  

1( | )k
t tp z z+ 1 1

1

( , | )
N

i k
t t t

i

p x z z+ +
=

=∑                 (8) 

Based on 1 1{ }i N
t ix + = , position information of sensor nodes 

and equation (2), we can predict the measurement 1
k
tz +  of 

sensor k  at time 1t +  without retrieving sensor measure-
ment. Then via equation (6), (7) and (8), we can approxi-
mate equation (3) by  

1 1
1 1

1 1 1

( , | )
( , | ) log

( | ) ( | )

i kN
i k t t t

k t t t i k
i t t t t

p x z z
I p x z z

p x z p z z
+ +

+ +
= + +

=∑%  

Let {1, 2..... }M K= be the set of the leader node’s 
neighbours. Let  

arg max { }k M kL I∈= %  

Then sensor L  is the leader node at the next time. If the 
element of L  isn’t exclusive, randomly select one of the 
elements of L  to be the next leader. 

3.3 Simulation 
This subsection evaluates the performance of our sensor 
selection. The interested area is 200 *200m m , and 200 
sensor nodes are considered, which distribute randomly at 
that area. Let 1 2( , )t t tx x x=  be the target state at time t , 

corresponding velocity is 1 2( , )t tv v , then the dynamic equa-

tion[4] is denoted by 1 1 1
1t t tx x v+ = + , 2 2 2

1t t tx x v+ = +  and 

                                     
1 1 1

1
2 2 2

1

{ t t t

t t t

v v e

v v e
+

+

= +

= +
                              (9) 

Sensing model is denoted by 

2 2

1 1arctan( )t t
t t

t t

x x
z e

x x
−

= +
−

                  (10) 

Where 1 2( , )t tx x  is the position of sensor node, 
2~ (0, 0.2 )i

te N , 1, 2i =  and 2~ (0, 0.05 )te N  are white 
and stationary, and independent of each other. Assuming 
that the initialization position of target is 0 (5, 5)x = , the 
initialization velocity of target is 0 (2,1.5)v = . The impor-

tant function is 1( | )i i
t tp x x+ , then we have  

  1 ( | )i i
t t t tw w p z x+ ∝  

In order to compare different sensor selection criterions, we 
define below there sensor selection criterions. 
(1) Nearest Neighbor (NN): we select the sensor node that 
has min distance between the sensor nodes and the leader 
node as the next leader. That is  

2 2arg min (( ) ( ) )s M s l s lleader sqrt x x y y∈= − + −  

where M  is the set of leader node’s neighbours, 
( , )s sx y and ( , )l lx y  are the coordinates of sensor s  and 
sensor l , respectively. 
(2) Max Information (MI): the reader can see the subsection 
3.2 to reach the details of this criterion. 
(3) Nearest Real Target (NRT):  Assuming that we can ob-
tain the true position of target, then we select the sensor 
node that has min distance between true position of target 
and the sensor node as the next leader. That is, the current 
leader can obtain the true measurement of its neighbours. 

2 2arg min (( ) ( ) )s M s sleader sqrt x x y y∈= − + −  
where ( , )s sx y and ( , )x y  are the coordinates of sensor s  
and target, respectively. The reader must remember that this 
is the ideal situation, because we can’t obtain the true posi- 
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Figure 1:  Performance of target tracking under different criterions 

tion of target. We define this criterion because we can use it 
to compare the situation that we can obtain the true meas-
urement of sensor node with our method, which we can’t 
obtain the true measurement of sensor nodes.   
Figure 1 describes the performance curves of target tracking 
under different sensor selection criterions. In figure 1, the 
solid line denotes the actual trajectory of target. The dotted 
line denotes the estimated trajectory under MI criterion. The 
dashed line denotes the estimated trajectory under NN crite-
rion. The dash-dot line denotes the estimated trajectory un-
der NRT criterion. From figure 1, we can see that the trajec-
tory under NRT criterion is very close to the true trajectory 
of target. The target tracking under MI performs well and 
the performance under NN is the worst. It is important to 
mention that the curve under MI is very similar to the curve 
under NRT, which imply that our sensor selection method 
can predict the measurement very well. 
Figure 2 and figure 3 show the sensor leader selection sce-
nario for target tracking. From figure 2, we can find that the 
positions of sensor leader distribute uniformly near the ac-
tual trajectory, and form the figure 3, we can see that the 
sensor leader centralize at the one side of interested area. So 
we say that our sensor selection method is more robust than 
that of NN criterion. 
In the former simulations, we assume that the sensor range 
is large enough and the sensor node can’t be the leader re-
peatedly. Now we study how the range of sensor impact on 
the sensor selection criterion, in this situation, the sensor 
nodes can be the leader repeatedly. Figure 4 5 6 show the 
sensor selection under different sensor ranges. Form those 
figures, we can find that when the range of sensor become 
smaller and smaller, the performance of tracking become 
worse and worse. When the sensor range reach 15, we can 
see there only one sensor leader during the tracking process 
and the performance is the worst, the tracker even lost the 
target in the end. 

3.4 Computational Complexity 
In this subsection, we analyze the computational complexity  
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Figure 2:  sensor leader selection under MI criterion 
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Figure 3: sensor leader selection under NN criterion 

of our sensor selection and compare it to that of the grid-
based sensor selection criterions. For M -dimensional tar-
get tracking, assuming that the M -dimensional target state 
subspace with non-trivial probability density is discretized 

into a grid of × ×...
M

n n n
64748

, then the total cost for method pro-
posed by Wang and Yao is ( )MnΟ [3]. Because the dimen-
sional of sensor measurement is 1M − -dimension when 
the target state is M -dimension, the total cost for method 
proposed by Zhao is 2M 1( )nΟ － [3]. With the dimension of 
target increasing, the computational complexity will be be-
yond the capability of sensor node. The total cost of our 
particle filter based sensor selection is ( )NΟ , where N  is 
the particle number, which is independent of the dimension 
of target state and the sensor observation. So our method is 
immune to the dimension of target state space. 
In order to show the superiority of our method in computa-
tional complexity, we use two-dimensional target tracking as 
an example to compare the computational complexity of 
different sensor selection criterions. We assume that the two-  
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Figure 4: sensor selection under sensor range=50 

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

x

y

sensor range=20
Actual trajectory
Sensor leader

estimated trajectory under MI criterion 

 

Figure 5: sensor selection under sensor range=20 

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

x

y

sensor range=15
Actual trajectory
Sensor leader

estimated trajectory under MI certerion 

 

Figure 6: sensor selection under sensor range=15 

dimensional target state subspace with non-trivial probabil-
ity density is 100 *100m m , which is discretized into a grid 
of 100*100 . Then the total cost for method mentioned in[3] 
is 2(100 )Ο  and the total cost for method mentioned in[1][2] 

is 3(100 )Ο . The total cost of our method is (1000)Ο , be-
cause according to our experiments, performance of particle 
filter is quite well when the particle number reaches about 
several thousands. In general, our particle filter based sen-
sor selection is computationally much simpler than the grid-
based mentioned in[1][2][3], especially when the dimension 
of target stat is high. 

4. CONCLUSION 

In this paper, we have discussed the distributed particle fil-
ter for target tracking in wireless sensor network. The key 
issue of distributed particle filter is sensor selection. Based 
on particle filter, we have proposed a new sensor selection 
criterion, which is computationally much simpler than other 
sensor selection criterions. Because of its computational 
effectivity, our sensor selection is more suitable to wireless 
sensor network. The effectiveness of our method has been 
evaluated by computer simulations. The simulation results 
showed that our method performed well for target tracking 
in wireless sensor network. 
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