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ABSTRACT

Recently, the technique of principal component analysis
(PCA) has been expressed as the maximum likelihood solu-
tion for a generative latent variable model. A central issue in
PCA is choosing the number of principal components to re-
tain. This can be considered as a problem of model selection.
In this paper, the probabilistic reformulation of PCA is used
as a basis for a Bayasian approach of PCA to derive a model
selection criterion for determining the true dimensionality of
data. The proposed criterion is similar to the Bayesian Infor-
mation Criterion, BIC, with a particular goodness of fit term
and it is consistent. A simulation example that illustrates its
performance for the determination of the number of principal
components to be retained is presented.

1. INTRODUCTION

Principal component analysis (PCA) [1] is a well established
technique for data analysis and processing. It has been
successfully applied in a number of areas from which one
can quote; image processing, data visualization and pattern
recognition. The general motivation for PCA and the shared
root of all its application areas is dimension reduction. In-
deed, PCA decomposes high dimensional data into a low di-
mensional subspace component and a noise component.
Modelling complexity in data using a linear projection is an
attractive paradigm offering both computational and algorith-
mic advantages along with increased ease of interpretability.
However, this technique of dimension reduction can not be
completely satisfactory without a procedure for choosing the
number of principal components to be retained.
The choice of the number of components to retain is a prob-
lem of model selection [2]. Underestimation of this number
will discard valuable information and results in biased esti-
mation of the true dimensionality of data. Overestimation
results in a large number of spurious components due to un-
derconstrained estimation and a factorization that will overfit
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the data.
Two main approaches have been investigated to address the
problem of model order determination. One can design an
hypothesis testing procedure or develop a model selection
criterion. Model selection criteria are often preferred due to
their simplicity of application. One only has to evaluate two
simple terms that trade off data fitting and model’s complex-
ity. However, the development of a model selection criterion
for estimating the number of principal components to be re-
tained requires a probabilistic formulation of PCA.
Recently in [3], it has been shown that a specific form of
Gaussian latent variable (where the latent variables offer a
more parsimonious description of the data) which is closely
related to statistical factor analysis has the property that its
maximum likelihood solution extracts the principal subspace
of the observed data set.
This probabilistic reformulation of PCA permits many ex-
tensions. For example, this model has been used in nonlinear
image modelling [15]. In this paper, we use it as the basis
for a Bayesian formulation of PCA. The issue of model com-
plexity can be handled naturally within a Bayesian paradigm
[6][4][5]. Therefore, based on the Bayesian formulation of
PCA, we develop a model selection criterion for estimating
the true dimensionality of the observed data set (or the num-
ber of principal components to retain). This reformulation
of PCA associated with integration over the Steifel manifold
has also been used in [9] to estimate dimensionality.
In the next section we review PCA and probabilistic PCA.
In section 3, the Bayesian formulation of PCA is introduced
and the criterion derived. Its consistency is also discussed. A
simulation example is presented in section 4 and concluding
remarks are given in section 5.

2. REVIEW OF PCA AND PROBABILISTIC PCA

2.1 Description of PCA

Consider a data set ofd-dimensional observation vectorsD =
(t1, ...,tN). Derivation of PCA is obtained by first computing
the sample covariance matrixS= N−1 ∑N

i=1(ti − t)(ti − t)T

wheret = N−1 ∑N
i=1ti is the data sample mean, and second

by finding the eigenvectorsui and eigenvaluesλi such that
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Sui = λiui . Theq principal axes (whereq < d for parsimo-
nious representation)U = (u1, ...,uq) are those orthonormal
onto which the retained variance under projection is maxi-
mal [7]. It can be shown that they correspond to the eigen-
vectors associated to the largest eigenvalues. The vector
xi = UT(ti − t) is thus aq-dimensional reduced represen-
tation of the observed vectorti and the covariance matrix
∑N

i=1xixT
i /N is diagonal with elements(λ1, ...,λq).

An important property is that PCA corresponds to the linear
projection for which the sum of squares reconstruction error
∑N

i=1(ti − t̂i)T(ti − t̂i) is minimized;̂ti = Uxi + t define the
linear optimal reconstruction ofti .
A significant limitation of PCA is the absence of an associ-
ated probabilistic model for the observed data.

2.2 Description of probabilistic PCA

Following [3], PCA can be reformulated as the maximum
likelihood solution of a linear latent variable model that re-
lates ad-dimensional observation vectort to a correspond-
ing q-dimensional vector of latent variablex. For parsimony
purposes,q < d. This model is related to factor analysis and
written as

t = Wx+ µ + ε, (1)

whereW is a d× q matrix that relates the two sets of vari-
ables,µ is ad-dimensional vector, the latent variables are de-
fined to be independent and Gaussian with unit variance, so
p(x) = N(0, Iq) and the noiseε is zero mean Gaussian with
covariance matrixσ2

d Id. The difference with factor analysis
is the covariance matrix ofε, which here, is not a general di-
agonal matrix.
Based on this model, PCA can be expressed as the esti-
mation of the basis vectorsW and the noise varianceσ2

d
that maximize the likelihood of the observed data vectors
D = (t1, ...,tN).
Under model (1), the probability distribution of the observed
variablet givenx is N(Wx+ µ,σ2

d Id). The marginal distri-
bution of the observed variable is then given by

p(t) =
∫

p(t|x)p(x)dx = N(µ,C), (2)

where the observation covariance matrixC = WWT + σ2
d Id.

Under this model, the probability of the observed data set is

p(D|W,µ ,σ2) = (2π)−Nd/2|C|−N/2exp

{
−1

2
tr(C−1S)

}
,

(3)
where

S=
1
N

N

∑
i=1

(ti − µ̂)(ti − µ̂)T =
1
N

N

∑
i=1

yiyT
i

is the sample covariance matrix of the observed data andµ̂
is the maximum likelihood estimate ofµ.
The log-likelihood is therefore given by

L =−N
2

{
d ln(2π)+ ln |C|+ tr(C−1S)

}
.

The maximum likelihood estimate of the parameterµ is the
sample mean

µ̂ =
1
N

N

∑
i=1

ti .

As shown in [3], the maximum likelihood solution ofW is
given by

Ŵ = Uq(Λq−σ2
d Iq)R,

where the columns of thed×q matrixUq are the eigenvec-
tors ofS, with corresponding eigenvalues in theq×q diago-
nal matrixΛq andR is an arbitraryq×q orthogonal rotation
matrix. The maximum likelihood estimator ofσ2

d is given by

σ̂2
d =

1
d−q

d

∑
i=q+1

λi ,

whereλi is theith eigenvalue ofS. This represents the aver-
age variance lost over the discarded dimension.
For this choice ofW andσ2

d , the covariance matrixC reduces
to a diagonal matrixC = diag(σ2

1 , ...,σ2
d) with σ2

q+1 = ... =
σ2

d . The maximized likelihood can therefore be rewritten as,

p(D|Ŵ, µ̂, σ̂2) = (2π)−Nd/2

(
q

∏
i=1

σ2
i

)−N/2

(σ2
d)−N(d−q)/2

exp

{
−N

2

q

∑
i=1

vi

σ2
i

}
exp

{
− N

2σ2
d

d

∑
i=q+1

vi

}
(4)

where

vi =
1
N

N

∑
j=1

y2
ji .

This proposed form of the maximized likelihood is more
adapted for the derivation of model selection criteria. The
vi ’s are consistent unbiased estimators ofσ2

j for j = 1, ...,q.
Probabilistic PCA (PPCA) suggests it self as an adapted tool
in a number of problems of data compression and visualiza-
tion. However, as with PCA, PPCA suffers from the absence
of a method for determining the value of the latent space di-
mensionalityq. The choice ofq corresponds to a problem
of model selection. The most convenient way to chooseq is
by the optimization of model selection criterion that trade off
data fitting and model complexity. In what follows we adopt
a Bayesian approach to derive an appropriate model selection
criterion for the choice of the dimensionalityq.

3. BAYESIAN ESTIMATION OF THE NUMBER OF
PRINCIPAL COMPONENTS

A Bayesian choice of the latent space dimensionalityq ∈
{1, ...,d} is obtained by maximizing the probabilityp(q|D).
If θq represents the parameter vector in the probability model
of orderq for the data, then within a Bayesian paradigm

p(q|D) =
∫

p(q,θq|D)dθq ∝
∫

p(D|θq)p(θq)dθq. (5)

This expression is valid for models with equal uniform prior.
Armed with the probabilistic reformulation of PCA defined
in the previous section, a Bayesian approach of PCA is ob-
tained by first introducing a prior distributionp(µ,W,σ2)
over the parameters of the model. Based on the fact that the
only information we have is the data setD, the most conve-
nient prior in this case is the noninformative prior. Based on
the model (3) a criterion has been proposed in [9]. In this pa-
per we use the model (4) introduced earlier for the derivation
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of a new criterion for the choice of the dimensionalityq. In
the model (4) the parameter vector isθ = (σ1, ...,σd) with
σi = σd for i > q.
Since information aboutσ1, ...,σd is not available, we will
choose noninformative prior distributions forσ1, ...,σd using
Jeffrey’s invariance theory [10]

p(σi) ∝
1
σi

. (6)

Substituting (4) and (6) in (5) gives

p(q|D) ∝
∫

p(D|θq)p(θq)dθq

∝
∫

(2π)−Nd/2

(
q

∏
i=1

σ2
i

)−N/2

(σ2
d)−N(d−q)/2

exp

{
−N

2

q

∑
i=1

vi

σ2
i

}(
q

∏
i=1

σ−1
i

)
σ−1

d

exp

{
− N

2σ2
d

d

∑
i=q+1

vi

}
dσ1...dσqdσd. (7)

To evaluate this integral, we use the identity
∫ +∞

0
x−(a+1)e−bx−2

dx=
1
2

b−a/2Γ(a/2),

wherea > 0, b > 0. Using this we have,
∫

σ
σ−Ne

− Nv
2σ2 σ−1dσ =

1
2

(
Nv
2

)−N/2

Γ(N/2) (8)

and
∫

σd

σ−N(d−q)σ−1
d exp

{
− N

2σ2
d

d

∑
i=q+1

vi

}
dσd =

1
2

(
N∑d

i=q+1vi

2

)−N(d−q)/2

Γ
(

N(d−q)
2

)
(9)

Integrals of this form are described in [12] and are related to
the Student-t distribution.
Now, substituting (8) and (9) in (7) gives

p(q|D) ∝
(

1
2

)q+1

Γ
(

N
2

)q

Γ
(

N(d−q)
2

)

q

∏
i=1

(
Nvi

2

)−N
2
(

N∑d
i=q+1vi

2

)−N(d−q)/2

(10)

Now consider minimizing−2lnp(q|D) as opposed to maxi-
mizing p(q|D). We have

−2lnp(q|D) ∝ 2(q+1) ln2−2qlnΓ
(

N
2

)

+ N ln

(
q

∏
i=1

vi

)
−2ln

(
Γ

(
N(d−q)

2

))

+ N(d−q) ln

(
N
2

)
+qNln

(
N
2

)

+ N(d−q) ln
d

∑
i=q+1

vi . (11)

To approximate theΓ function, we use the Stirling’s formula
[11]

Γ(x) = (2π)1/2xx−1/2e−xeO(N−1).

Hence,

2 lnΓ
(

N
2

)
= ln(2π)+(N−1) ln

(
N
2

)
−N+O

(
1
N

)
,

and

2ln

(
Γ

(
N(d−q)

2

))
= ln(2π)+O

(
1
N

)

+ N(d−q)
[
ln

(
N
2

)

+ ln(d−q)−1]

−
[
ln

(
N
2

)
+ ln(d−q)

]

Substituting these two expressions in (11) and removing the
O(1/N) and constant terms gives

−2lnp(q|D)
N

∝ ln




(
q

∏
i=1

vi

)
×

(
1

d−q

d

∑
i=q+1

vi

)(d−q)



+
q
N

ln(N). (12)

The proposed criterion for selecting the number of principal
components is identical to the MDL [13] and BIC [4][6]
where the first term of the right hand side of equation (12)
play the role of the data fitting or goodness of fit term. The
form of this term is similar to the likelihood term described
in many papers on signal detection [14]. The difference is
the presence of the quantitiesvi ’s defined above in place of
the eigenvalues of the covariance matrix of the observed data.

Lemma: The proposed information criterion given
by

ICPPA(k) = ln




(
k

∏
i=1

vi

)
×

(
1

d−k

d

∑
i=k+1

vi

)(d−k)



+
k
N

ln(N).

whereICPPAstands for Information Criterion for Principal
Component Analysis, is consistent.

Proof: Let q be the correct order. The consistency of
the criterion (12) is proved by by showing that in the large
sample limitICPPA(k) is minimized fork = q.
Casek < q, it follows from (12) that

ICPPA(q)− ICPPA(k) = ln




(
∏q

i=k+1vi
)

(
1

q−k ∑q
i=k+1vi

)(q−k)




+ ln




(
1

q−k ∑q
i=k+1vi

)(q−k) (
1

d−q ∑d
i=q+1vi

)(d−q)

(
1

d−k ∑d
i=k+1vi

)(d−k)




+
q−k

N
lnN. (13)
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Using the arithmetic mean, geometrical mean inequality it
follows

1
q−k

q

∑
i=k+1

vi >
q

∏
i=k+1

v1/(q−k)
i .

This implies that the first term of (13) is negative. If we de-
fine

A1 =
1

q−k

q

∑
i=k+1

vi A2 =
1

d−q

d

∑
i=q+1

vi

α1 =
q−k
d−k

α2 =
d−q
d−k

then the second term of (13) can be rewritten as

B = (d−k) ln

(
Aα1

1 Aα2
2

α1A1 +α2A2

)
.

By the generalized arithmetic mean geometric mean inequal-
ity, we haveα1A1+α2A2≥Aα1

1 Aα2
2 which impliesln(B) < 0.

Now, since the last term in (13) goes to zero as the sam-
ple size increases it follows that the differenceICPPA(q)−
ICPPA(k) is negative and then

ICPPA(q) < ICPPA(k) a.s. N→ ∞.

Taking nowk > q, it follows from [14] (Lemma 3.2) and a
Taylor expansion of the logarithm that

Lk = ln




(
k

∏
i=1

vi

)
×

(
1

d−k

d

∑
i=k+1

vi

)(d−k)



= O

(
ln lnN

N

)
a.s. (14)

substituting (14) into (12), recalling that asN → ∞
lnN/ ln lnN→ ∞.
It follows that fork > q

ICPPA(k) > ICPPA(q) a.s. N→ ∞.

This completes the proof.

4. SIMULATION EXAMPLE

In order to illustrate the performance of the proposed cri-
terion in estimating the number of principal components to
retain, a computer simulation of 1000 trials was performed
with d = 20, N = 15 and N = 100, exact orderq0 = 10
with σ j = 10σd for j ≤ q. This yielded the following per-
centages of correct detection in terms of the final SNR,
FSNR=−10log10σ2

d Figure 1 illustrate the performance in

Table 1: Percentage of correct selection by the criterion for
1000 realizations.

FSNR dB 10 20 30 40 50 60 70
N=15 82 82 80 81 80 82 82
N=100 96 94 96 95 96 96 97

term of sample size for FSNR=30 dB. On Table 1, it is seen
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Figure 1: Percentage of correct selection for different sample
sizes, FSNR=30 dB.

that the proposed criterion provides good results for small
sample data sets independently of the level of the FSNR.
These results are better when the sample size increases. On
Figure 1, we can observe the influence of the sample size on
the performance of the criterion. The performance exceeds
90% of correct selection when the sample size≥ 50.

5. CONCLUSION

The main objective of this paper was to show that a consistent
criterion for estimating the number principal components to
retain in PCA can be obtained by a blend of Bayesian argu-
ments and PPCA.
The final criterion which is obtained by approximating the
posterior probability distributionp(q|D) is more suited for
large sample applications.This is due to the number of
O(1/N) terms that have been removed for the derivation of
this simplified version which has a less accurate penalty term.
For the derivation of this criterion, a more simplified version
of the maximized likelihood in comparison to the one used in
[9] has been used. The obtained criterion is identical toBIC
if we consider the first term of the right hand side of (12) as
the goodness of fit term. Its good performance in estimating
the number of principal component to retain has been shown
in a simulation example.
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