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BAYESIAN ESTIMATION OF THE NUMBER OF PRINCIPAL COMPONENTS
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ABSTRACT the data.

Jwo main approaches have been investigated to address the
yroblem of model order determination. One can design an
ypothesis testing procedure or develop a model selection

PCA is choosing the number of principal components to redriterion. Model selection criteria are often preferred due to

H?elr simplicity of application. One only has to evaluate two

tain. This can be considered as a problem of model selectioSlm le terms that trade off data fittina and model’'s complex-
In this paper, the probabilistic reformulation of PCA is used> P 9 'S comple
. However, the development of a model selection criterion

as a basis for a Bayasian approach of PCA to derive a mod or estimating the number of principal components to be re-
selection criterion for determining the true dimensionality oft ined ng babilisti pf pl fi prCA

data. The proposed criterion is similar to the Bayesian Infor-Fgilne rleq_uwe35 a prrlo abl Istic r(])rmu ahlon 0 et .
mation Criterion, BIC, with a particular goodness of fit term RGNty in [3], it has been shown that a specific form o

and it is consistent. A simulation example that illustrates itSGaussmn latent variable (where the latent variables offer a

performance for the determination of the number of principa["Cre Parsimonious description of the data) which is closely
components to be retained is presented. related to statistical factor analysis has the property that its

maximum likelihood solution extracts the principal subspace
of the observed data set.
1. INTRODUCTION This probabilistic reformulation of PCA permits many ex-

Principal component analysis (PCA) [1] is a well established€nsions. For example, this model has been used in nonlinear
technique for data analysis and processing. It has bedf*@ge modelling [15]. In this paper, we use it as the basis
successfully applied in a number of areas from which ondCr & Bayesian formulation of PCA. The issue of model com-
can quote; image processing, data visualization and patte%ex'ty can be handled naturally within a Bayesian paradigm

recognition. The general motivation for PCA and the sharedPl[4l[5]- Therefore, based on the Bayesian formulation of
root of all its application areas is dimension reduction. In--CA, we develop a model selection criterion for estimating

deed, PCA decomposes high dimensional data into a low d he true dimensionality of the observed data set (or the num-

mensional subspace component and a noise component. °€" of prmupal components to_retaln). This rgformulqtlon
Modelling complexity in data using a linear projection is an®f PCA associated with integration over the Steifel manifold
attractive paradigm offering both computational and algorith'@S also been used in [9] to estimate dimensionality.

mic advantages along with increased ease of interpretabilit}} € next section we review PCA and probabilistic PCA.
However, this technique of dimension reduction can not b&? Section 3, the Bayesian formulation of PCA is introduced

completely satisfactory without a procedure for choosing th&nd the criterion derived. Its consistency is also discussed. A
number of principal components to be retained. simulation example is presented in section 4 and concluding

The choice of the number of components to retain is a prop€marks are given in section S.

lem of model selection [2]. Underestimation of this number

will discard valuable information and results in biased esti- 2. REVIEW OF PCA AND PROBABILISTIC PCA
mation of the true dimensionality of data. Overestimation, ¢ Description of PCA

results in a large number of spurious components due to un-

derconstrained estimation and a factorization that will overfiConsider a data set dtdimensional observation vectdbs=

1,...,tn). Derivation of PCA is obtained by first computing
National ICT Australia is funded by the Australian Department of Com-the sample covariance matrse N1 Z!\il(ti _ E)(ti _ E)T

munications, Information Technology and the Arts and the Australian Re- — _1<N . 1=

search Council through Backing Australia’s Ability and the ICT Centre of Whe_ret. =Nl tiis the data sa}mple mean, and second

Excellence Program. by finding the eigenvectors; and eigenvaluegd; such that

Recently, the technique of principal component analysi
(PCA) has been expressed as the maximum likelihood sol
tion for a generative latent variable model. A central issue i
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Sy = Aju;. Theq principal axes (wherg < d for parsimo-  As shown in [3], the maximum likelihood solution ¥/ is
nious representatiort) = (uy, ...,Uy) are those orthonormal given by

onto which the retained variance under projection is maxi- W= Uqg(Aq— o‘dzlq)R7

mal [7]. It can be shown that they correspond to the eigen- . .
vectors associated to the largest eigenvalues. The vectynere the columns of the x g matrixUg are the eigenvec-
x; = UT(t; — t) is thus ag-dimensional reduced represen- 1OrS 0fS, with corresponding eigenvalues in e g diago-
tation of the observed vectdy and the covariance matrix N@l Matrix/Aq andRis an arbitraryq x q orthogonal rotation
ZiNzlxiXiT/N is diagonal with elementSiy, ..., Aq). matrix. The maximum likelihood estimator oﬁ is given by
An important property is that PCA corresponds to the linear

projection for which the sum of squares reconstruction error .2 1 d A

N (ti — )T (ti — ti) is minimized;t; = Ux; + t define the 474 q ierl L

linear optimal reconstruction af. -

A significant limitation of PCA is the absence of an associyynere); is theith eigenvalue oB. This represents the aver-

ated probabilistic model for the observed data. age variance lost over the discarded dimension.
For this choice oV ando, the covariance matrig reduces
to a diagonal matri€C = diag(d?, ..., 03) with 0, = ... =

02. The maximized likelihood can therefore be rewritten as,

2.2 Description of probabilistic PCA

Following [3], PCA can be reformulated as the maximum
likelihood solution of a linear latent variable model that re-
lates ad-dimensional observation vectorto a correspond-

—N/2
ing g-dimensional vector of latent variabke For parsimony (D|VAV’ i, 52) _ (271)’Nd/2 <|ﬂ|0i2> (05),N(d,q)/2
i=

purposesq < d. This model is related to factor analysis and
written as .
NI v N
—= S S rexXpl —=— Vi o (4)
2 i; Giz} { 203 i:qz+1 I}

t =Wx+ U +E¢, (1) ox
whereW is ad x q matrix that relates the two sets of vari- P

ables u is ad-dimensional vector, the latent variables are de-
fined to be independent and Gaussian with unit variance, sshere

p(x) = N(0,1q) and the noise is zero mean Gaussian with 1 N ¥

covariance matrbo3ly. The difference with factor analysis i=N Zl i

is the covariance matrix af, which here, is not a general di- =

agonal matrix. This proposed form of the maximized likelihood is more

Based on this model, PCA can be expressed as the es#éidapted for the derivation of model selection criteria. The
mation of the basis vecto/ and the noise variance?  Vi's are consistent unbiased estimatorgffor j = 1,....q.

that maximize the likelihood of the observed data vectorgrobabilistic PCA (PPCA) suggests it self as an adapted tool
D = (t1,...,tNn). in a number of problems of data compression and visualiza-
Under model (1), the probability distribution of the observedtion. However, as with PCA, PPCA suffers from the absence
variablet givenx is N(Wx + L, adzld). The marginal distri-  of a method for determining the value of the latent space di-

bution of the observed variable is then given by mensionalityg. The choice ofg corresponds to a problem
of model selection. The most convenient way to chapise
p(t) = / p(t[x)p(x)dx = N(u,C), (2) by the optimization of model selection criterion that trade off
data fitting and model complexity. In what follows we adopt

a Bayesian approach to derive an appropriate model selection

i i i T 2
where the observation covariance matix= WW' + gglg. Criterion for the choice of the dimensionality

Under this model, the probability of the observed data set i

) Nd/2(~ N2 1 1 3. BAYESIAN ESTIMATION OF THE NUMBER OF
p(D|W, u,0%) = (2m) IC| exp{—ztr(C S)}7 PRINCIPAL COMPONENTS
(3) A Bayesian choice of the latent space dimensionaiity
where {1,...,d} is obtained by maximizing the probability(q|D).
N N If 8, represents the parameter vector in the probability model
S— % Zl(ti -7 = % ziyiyiT of orderq for the data, then within a Bayesian paradigm
i= =

is the sample covariance matrix of the observed datajand p(alb) = / P(d, 69| D)d6, 1 / P(D[6g)p(q)d6y.  (5)
is the maximum likelihood estimate pf.

The log-likelihood is therefore given by This expression is valid for models with equal uniform prior.
Armed with the probabilistic reformulation of PCA defined
N —1 in the previous section, a Bayesian approach of PCA is ob-
L= 2 {dIn(2m) +In|C[ +tr(C*9)}. tained by first introducing a prior distributiop(u, W, a?)

over the parameters of the model. Based on the fact that the
only information we have is the data 42t the most conve-
nient prior in this case is the noninformative prior. Based on
the model (3) a criterion has been proposed in [9]. In this pa-
per we use the model (4) introduced earlier for the derivation

The maximum likelihood estimate of the parameteis the
sample mean

z

t;.

Zl-

h
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of a new criterion for the choice of the dimensionalityln

the model (4) the parameter vectorls= (01, ...,0q) with

0, = gq fori > q.

Since information about, ..., g4 is not available, we will
choose noninformative prior distributions fax, ..., o4 using
Jeffrey’s invariance theory [10]

1
p(ai) O o

(6)
Substituting (4) and (6) in (5) gives

p(qD) O / P(D|6q) p(6q)d6y
q -N/2
0 / (27T)Nd/2<|_|0i2> (03)~N@-a)/2
q . q
exp{—ﬁ_z;'z} (I‘|01> o5’
d

N
exp{—zzl Z Vi } doi...dogdog. @
d i=g+1
To evaluate this integral, we use the identity
/+oo x—(@+1) e—brzdx _ %b—a/Zl—(a/z)7
0

wherea > 0, b > 0. Using this we have,

. ~N/2
/U(I*'\‘e*%2 o ldo = % <N2V) r(N/2)  (8)

and

. N d
—N(d-q) ;-1 _ . —
o] a;exp Vi pdog =
./O'd d { 20—(12 i:;»l I}

1 (N3 N =)
2( 2 ) r( 2 > ©

Integrals of this form are described in [12] and are related to

the Student-t distribution.
Now, substituting (8) and (9) in (7) gives

a0 (3)"r(3)'r (M)
ilj (sz.) K ('\szquﬂv.> ~N(d—q)/2

(10)
Now consider minimizing-2Inp(q|D) as opposed to maxi-
mizing p(q|D). We have

—2Inp(qD) O 2(q+1)In2—2qinT (';)

+ N (ﬁvi>—2ln(r('\'(d2_q>)>
+ waman(%) coun(Y)

d
+ N(d-q)ln Z Vi.
i=g+1

(11)

To approximate th€ function, we use the Stirling’s formula
[11]
M(x) = (2m)Y/2¢ 1/2e XN,

Hence,
2Inr (Z) =In(2m)+(N—-1)In (I;I) —N—i—O(;) 5
and
2In (r(N(dZ_q)» - In(2rr)+0<:l
+ N(d-q) [In ';)
+ In(d—q)—1]

HOMER]

Substituting these two expressions in (11) and removing the
O(1/N) and constant terms gives

~2Inp(q|D) a 1 &\
N O In <<i|1vi> X (d_qiélvi>

+ Dy, (12)
N

The proposed criterion for selecting the number of principal
components is identical to the MDL [13] and BIC [4][6]
where the first term of the right hand side of equation (12)
play the role of the data fitting or goodness of fit term. The
form of this term is similar to the likelihood term described
in many papers on signal detection [14]. The difference is
the presence of the quantitigss defined above in place of
the eigenvalues of the covariance matrix of the observed data.

Lemma: The proposed information criterion given
by
K . d (d—k)
ICPPAK) = In vi>><< vi>
(il_l dfki: +1
+ %In(N).

wherelCPPA stands for Information Criterion for Principal
Component Analysis, is consistent.

Proof: Let q be the correct order. The consistency of
the criterion (12) is proved by by showing that in the large

sample limittCPPA(K) is minimized fork = q.
Casek < q, it follows from (12) that

(I'qu:mVi)
@K

(qT1k Eiq:k+1vi)
(a-k) (d-0)

(e5teav)  (dgslenv)

d—k
(5% S8 v) @

ICPPA(q) — ICPPAK) = In

+In

+%k|nN. (13)
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Using the arithmetic mean, geometrical mean inequality it
follows

This implies that the first term of (13) is negative. If we de-

0.95-

0.9r

0.85-

fine

13 1 J
Al=—— Vi A= — A
a—Ki £ d_qizé-l
_gq-k ~d-—q
R 2= d-k
then the second term of (13) can be rewritten as
AalAgz
B=(d—k)n{ —1—2 ).
( ) (alAl-i-azAz)

0.8r

Percentage of correct detection

0.7r

0.65 . . .
0 150 200 250
Sample size N

1 1
50 100 300

Figure 1: Percentage of correct selection for different sample
sizes, FSNR=30 dB.

By the generalized arithmetic mean geometric mean inequal-

ity, we havea; Ay + apA, > ATAS? which impliesin(B) < 0.

Now, since the last term in (13) goes to zero as the santhat the proposed criterion provides good results for small

ple size increases it follows that the differed&@PPA(q) —
ICPPA(K) is negative and then

ICPPA(G) < ICPPAK)

as. N — oo,

Taking nowk > g, it follows from [14] (Lemma 3.2) and a

Taylor expansion of the logarithm that

() (52
o(mmN)as

substituting (14) into (12),

INN/ININN — co.
It follows that fork > q

ICPPA(K) > ICPPA(Q)

Lk

(14)

recalling that aNl — oo
as. N— oo,
This completes the proof.

4. SIMULATION EXAMPLE

In order to illustrate the performance of the proposed cri

sample data sets independently of the level of the FSNR.
These results are better when the sample size increases. On
Figure 1, we can observe the influence of the sample size on
the performance of the criterion. The performance exceeds
90% of correct selection when the sample siz80.

5. CONCLUSION

The main objective of this paper was to show that a consistent
criterion for estimating the number principal components to
retain in PCA can be obtained by a blend of Bayesian argu-
ments and PPCA.

The final criterion which is obtained by approximating the
posterior probability distributiorp(g|D) is more suited for
large sample applications.This is due to the number of
O(1/N) terms that have been removed for the derivation of
this simplified version which has a less accurate penalty term.
For the derivation of this criterion, a more simplified version
of the maximized likelihood in comparison to the one used in
[9] has been used. The obtained criterion is identic&1t©

if we consider the first term of the right hand side of (12) as
the goodness of fit term. Its good performance in estimating
the number of principal component to retain has been shown
in a simulation example.

terion in estimating the number of principal components to

retain, a computer simulation of 1000 trials was performed

with d = 20, N = 15 and N = 100, exact ordergy = 10
with g; = 1004 for j < g. This yielded the following per-

centages of correct detection in terms of the final SNR,
FSNR= —10log,,07 Figure 1 illustrate the performance in [2]

Table 1: Percentage of correct selection by the criterion fo

1000 realizations.

[FSNRJB] 10 20 [ 30 [ 40 [ 50 [ 60 | 70 ]
N=15 828280 B8L[80][82]82
N=100 | 96 | 94 | 96 | 95 | 96 | 96 | 97

term of sample size for FSNR=30 dB. On Table 1, it is seen
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