
STATISTICAL METHOD BASED ON SIMULTANEOUS DIAGONALISATION FOR 
POLSAR IMAGES ANALYSIS 

Salim Chitroub 

Signal and Image Processing Laboratory, Electronics and Computer Science Faculty, U. S. T. H. B.  
P. O. Box 32, El-Alia, Bab-Ezzouar, 16111, Algiers, ALGERIA 

Fax: + (213) (21) 24-76-07, email: s_chitroub@hotmail.com 

 
ABSTRACT 

In [1], we have proposed a PCA-ICA neural network model 
for POLSAR image analysis. We propose here a new method 
that is full based on an algebraic statistical formulation and 
that is well justified from the mathematical point of view. Its 
advantage is that it is easy in its implementation that re-
quires certain subroutines of the inverse matrix and the ei-
genvalues/ eigenvectors decomposition. While the PCA-ICA 
neural network model is very sensible to both the probabil-
istic model of the data [2], [3] and the power of the noise 
that corrupts the input data [1]. In addition, it requires 
more computation times in its learning process. Thus, the 
goal of this paper is to arise the power of each method and 
by this way we try to open new issues in the concern of 
working out new methods that accumulate the advantages of 
each method while avoiding their disadvantages. 

1. INTRODUCTION 

Over the last couple of decades there has been considerable 
interest in the imaging of the Earth by POLarimetric Syn-
thetic Aperture Radar (POLSAR) systems. The images ac-
quired with these systems provide a rich set of data that 
brings knowledge on the nature of targets and opens the way 
to new geophysical applications and others [2]. However, 
the POLSAR images are correlated and corrupted by 
speckle that appears as a granular signal-dependent noise 
[3]. Speckle has the characteristics of a non-Gaussian multi-
plicative noise. It presents challenges to most common mod-
els for POLSAR image processing and understanding [2], 
[3]. Correlation elimination and speckle reduction are neces-
sary for an efficient automatic interpretation of the scene.  
We have already proposed in [1] a PCA-ICA neural network 
for analysing the POLSAR images. With this method, the 
correlation between the POLSAR images is eliminated and 
the speckle noise is largely reduced in only the first Inde-
pendent Component (IC) image. In fact, although the algo-
rithm of the model is well established, the method suffers 
from the sensibility of the ICA part of the model to the na-
ture of the statistical model of the input data (super-
Gaussian or sub-Gaussian) and the power of the noise that 
corrupts these data [1]. We have used, as input data for the 
ICA part, only the first principal component (PC) image. 
The obtained IC image is an image of very high quality and 
better contrasted than the first PC image. However, when the 

second and third PC images are also used as input images 
with the first PC image, the results are not significative and 
the first IC image becomes less contrasted and more affected 
by the noise. Note that, in some remote sensing applications 
such as geo-hazard mitigation in which the radar images are 
very useful, the second and third PC images are of impor-
tance for mapping the thin structures of the observed scene 
such as the geological structures and the trajectory of the 
earthquake [4], [5], [6]. This can be justified by the fact that 
the ICA part of the model is essentially based on the princi-
ple of the Infomax algorithm [1]. This algorithm, however, 
is efficient only in the case where the input data have low 
noise [7], [8]. Another drawback of the method proposed in 
[1] is the computation time of the learning process, which is 
very costly. 
The purpose of this paper is to propose a statistical method 
that performs well for analysing POLSAR images and that 
presents some advantages in its implementation. The pur-
pose is to overcome the disadvantages of the method pro-
posed in [1] and at the same time we will try to reply, for 
the moment, to the question how is possible the elaboration 
of a new method that exploits the advantages of the present 
method and of that proposed in [1] but also by avoiding 
their disadvantages. Before detailing the present method in 
section 3, we give in section 2 the POLSAR images model 
and the statistics to be used later in the concept of the linear 
transform matrix. Experiments performed on real POLSAR 
images, provided by the SIR-C/X system, are given and 
commented in section 4. In order to prove the effectiveness 
of the proposed method, the PCA-based method [9] and the 
PCA-ICA neural network model [1] are used for compari-
son. We conclude the paper in the last section. 

2. STATISTICS TO BE USED  

We adopt the same model used in [1]. Let xi be the content 
of the pixel in the ith image, si the noise-free signal response 
of the target, and ni the speckle. Then, we have the following 
multiplicative model: iii nsx .= . By supposing that the 
speckle has unity mean, standard deviation of σi, and is sta-
tistically independent from the observed signal xi [3], the 
multiplicative model can be rewritten as: ( )1nssx iiii −+= . . 
The term ( )1ns ii −.  represents the zero mean signal-dependent 
noise and characterizes the speckle noise variation. Now, let 
X be the stationary random vector of input POLSAR images. 
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So, the covariance matrix of X, xΣ , can be written as: 

nsx Σ+Σ=Σ , where 
sΣ  and nΣ are the covariance matrices 

of the noise-free signal vector and the signal-dependent 
noise vector, respectively. These two matrices are used in 
the conception of the linear transformation matrix of the 
proposed statistical method. 

3. PROPOSED STATISTICAL METHOD FOR 
POLSAR IMAGES ANALYSIS 

The basic idea of the proposed method is inspired from the 
well-developed aspects of the matrix theories and computa-
tions. The method consists of exploiting the simultaneous 
digitalisation procedure of the signal and multiplicative 
noise covariance matrices via one orthogonal matrix. 
Of course, for making the application coherent with such 
theories, the model ( )1nssx iiii −+= .  is adopted for the data 
as well as the nature of the statistical parameters that enter in 
the concept of the method must agree the assumptions and 
the conditions involved by the theories.  
The two matrices to be diagonalised are 

sΣ  and nΣ , respec-
tively. The orthogonal matrix that diagonalises these two 
matrices is the linear transform matrix that we look for it. 

nΣ  becomes an identity matrix, which implies that the vari-
ance of the noise in each new image is unity. Thus, the noise 
becomes uncorrelated with the data in the new images. The 
signal to noise ratio (SNR) is characterized by the solutions 
of the generalized symmetric eigenvalue problem fathered 
by the method. These solutions are the eigenvalues that are 
the diagonal elements of the covariance matrix of the new 
images. This means that these images are not correlated and 
they are ordered according to the values of the correspond-
ing SNR (i.e., according to their qualities).  
 
3.1. Mathematical formulation  
The extraction of the new images, via the linear transform 
matrix noted A, consists of maximizing the information car-
ried by the original POLSAR images in a small number of 
new images that are statistically uncorrelated and in which 
the SNR and image contrast are improved. The criterion 
noted “C” for determining the matrix A can be stated as 
follows: "Finding A in order that the matrix nΣ  becomes an 
identity matrix and the matrix xΣ  is transformed, at the 
same time, to a diagonal matrix (i.e., the new images are 
statistically uncorrelated) whose diagonal elements are or-
dering in decreasing values (i.e., by ordering the new im-
ages in decreasing values of their variances)". The problem 
posed according to the criterion “C” can be mathematically 
formulated as follows. The row vectors of the matrix A are 
the vectors, ai, that maximize the ratio: 
 

( ) ( )int
iiXt

ii a..aa..a ΣΣλ =                   (1) 
 
Taking into account the following two constraints that con-
sist of allowing to make the researched linear transform to 
be orthogonal and normalised:  
 

⎩
⎨
⎧

≠=
=

ji   for   0a.a   and
1a..a
jt

i

in
t
i Σ

            (2) 

 
Equation (1) is equivalent to find the vector ai such that: 
 

( )( )( ) 0aa..a.a..aa i
1

in
t
iiX

t
iii =∂∂=∂∂ −ΣΣλ  (3) 

 
As the two matrices, xΣ  and nΣ , are real, symmetric and 
positive-definite, then, from (3) we can deduce that:   
 

( )( )
( ) 0a..                      
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iniX

1
in

t
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By generalizing equations (1), (2) and (4) for all the row 
vectors of the matrix A, we obtain the following system of 
equations: 
 

( )
⎩
⎨
⎧

=
=−

IA..A
0A..

nt

nX

Σ
ΛΣΣ

                    (5) 

 
whereΛ  is the diagonal matrix of eigenvalues λi, and I is the 
identity matrix. Then, finding the matrix A consists of solv-
ing the system of equations (5). The matrix A is the solution 
of the generalized symmetric eigenvalues problem given in 
(4) but with the whitening constraint of the matrix nΣ . The 
algorithm proposed hereafter for obtaining the matrix A is 
deduced from the theorem about real symmetric matrices 
[10], [11], [12], [13]. The theorem insures the existence of 
the matrix A according to the criterion “C” mentioned 
above, and it is stated as follows [11]: “Let B and C be (nxn) 
real symmetric matrices. If B is positive definite, there exists 
a non-singular matrix Q such that IQ.B.Qt =  and 

DQ.C.Qt = , where D is a diagonal matrix whose diagonal 
elements are the roots λ of the polynomial equation 

0B.C =− λ .” As the two covariance matrices, xΣ and 

nΣ , that enter in the resolution of the system of equations 
(5) are symmetric, real, positive definite matrices, we may 
identify nΣ  as the matrix B and xΣ as the matrix C. Based 
on this theorem, the algorithm that allows us to obtain the 
matrix A consists of realizing at the same time the whitening 
operation of the matrix nΣ  and the diagonalisation of the 
matrix xΣ . It is the so-called simultaneous diagonalisation 
of two matrices using one orthogonal matrix, which is the 
matrix A. Then, the matrix A exists and it is not singular. 
However, since nΣ  is estimated from both the filtered and 
original images, it may occur, for practical reasons, that this 
matrix becomes a singular matrix [13]. The simultaneous 
diagonalisation of nΣ  and xΣ , is still possible [13], [14] 
but the results require careful interpretation and other algo-
rithms are needed to compute the eigenvalues [13], [14]. So, 
from the mathematical viewpoint, the method is well justi-
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fied. This makes easily the translation of the theoretical de-
velopment of the method to a practical procedure of imple-
mentation that performs well with precision the analysis of 
the POLSAR images.  
 
3.2. Implementation procedure 
Based on the above theoretical analysis, the pseudo code of 
the algorithm that allows us to obtain the matrix A can be 
formulated. We note Estimate-Fct(.) and Decomp-Mat(.) as 
the procedures of covariance matrix estimation and spectral 
decomposition of the matrix, respectively. Note that the pro-
cedure of spectral decomposition consists of calculating the 
orthonormal eigenvectors matrix, noted EigenVec[.], and the 
corresponding diagonal matrix of the eigenvalues, noted 
EigenVal[.]. So, the procedure of implementation can be 
stated as follows:   
 

Estimate-Fct (ΣX ) ; 
Estimate-Fct (Σn ) ; 
Decomp-Mat (Σn) ; →  EigenVec[U], EigenVal[V] ;  
Compute : ; V.U: 2/1−=Φ and  ; ..: Xt ΦΣΦΨ =  
Decomp-Mat (ψ) ; →  EigenVec[E], EigenVal[P] ;  
Compute: ( ) ( )t2/1

t E.V.U:E.:A −== Φ ; 
Compute the output images from the original images 
such as: AXY =  

 
3.3. Interpretation 
The above algorithm computes the linear transform matrix, 
A, that we look for it. The orthonormalized eigenvector ma-
trix, U, and the corresponding matrix of the eigenvalues, V, 
are computed from the spectral decomposition of nΣ . These 
two matrices are used to construct the renormalization ma-
trix, Φ = U. V-1/2, for which we have Φt.ΣN.Φ = I and Φt.Φ 
= V-1. It is the requirement that V have an inverse which 
means that nΣ  must be non-singular and, hence, positive 
definite. The renormalization matrix, Φ, is used to weight 
the covariance matrix, xΣ , to give the noise-adjusted data 
covariance matrix, Ψ =Φt.ΣX.Φ. The spectral decomposition 
of Ψ is computed in order to determine the linear transform 
matrix A.  
The vector of the new images, noted Z, is produced from the 
vector of the original POLSAR images, X, such as: Z = At.X, 
where A is given by A = (Φ.E)t = (U.V-1/2.E)t and E is the 
matrix of the orthonormal eigenvectors of Ψ. So, the pro-
posed method can be implemented by a single matrix, A, 
which simultaneously diagonalises xΣ and nΣ  such as: 
At.ΣX.A = P and At.ΣN.A = I, where P is the diagonal matrix 
of the eigenvalues of Ψ corresponding to E.  The eigenval-
ues of the matrix P are then the solutions of the generalized 
symmetric eigenvalues problem (5). This matrix is the co-
variance matrix of the new extracted images, which means 
that these images are statistically uncorrelated. The diagonal 
elements of P characterize the SNR in the new images since 
the covariance matrix of the signal-dependent noise is equal 
to an identity matrix. The SNR is then improved in the first 
few new images in which the variances are important.  

4. EXPERIMENTAL RESULTS  

A real POLSAR data provided by the SIR-C system are used 
to evaluate the proposed method. The data were acquired 
over the Orgeval site (east of Paris, France, 329x329pixels) 
during summer 1994 [15] and correspond to bands C and L 
with HH and HV polarizations for each. The four bands are 
shown in Fig. 1. Classification methods applied to these 
images will not be effective due to the domination of the 
speckle noise. The existence of the redundancies between 
these images is clearly shown in Fig. 1. The extracted new 
images using the proposed method are given in Fig. 2 beside 
the first IC image of PCA-ICA neural network model of [1]. 
It is clear that the IC image is better than the first new im-
age. Most of the information contained in the original im-
ages is now concentrated in this image, which is an image of 
quality. The first new image is also an image of quality but 
some speckle noise still exists in this image. Second and 
third new images contain mainly noise more than informa-
tion. The fourth new image is very noisy and no information 
can be extracted from it. We quantify the speckle level by 
computing the contrast ratio (CR), which is the average 
value of the standard deviation to mean ratios calculated in 
small homogeneous areas of the observed scene. The reduc-
tion of the speckle noise level is quite evident when compar-
ing the first new image of the proposed method with the 
image of the L band (HV). This image has a CR value of 
0.11, while the first new image reduces the speckle noise 
level to 0.148. However, the IC image is superior to the first 
new image and its CR value is about 0.39. The SNR values 
of the original and new images are given in Tables 1 and 2, 
respectively. The original images have ratios ranging from 
4.20 to 18.84. While the SNR value in the first new image is 
improved to 26.62; this corresponds to a factor of 1.41 com-
pared with the best original image (L band-HV).  
In order to prove the effectiveness of the proposed method 
in data compression and enhancement of POLSAR images, 
the standard PCA method of POLSAR images in the loga-
rithmic domain is used. Note that this method, which per-
mits us to convert the multiplicative model of the speckle 
noise to an additive model and hence the possibility to apply 
the standard PCA method, is often suggested in the literature 
for data compression and enhancement of POLSAR images. 
To evaluate the performance of the two methods, we have 
used a criterion that measures the capability in image com-
pression without an important loss of information. This con-
sists of reconstituting the four original POLSAR images 
from only the first and the second new images. To quantify 
the degree of similarity between the original POLSAR im-
ages and the reconstituted ones, the mean-square-error 
(MSE) of the reconstitution process is calculated as: 

( ) ( )( )ii
t

ii x̂x.x̂xEMSE −−= , where ix  and ix̂  are the original 
and the reconstituted images, respectively. Figures 3 and 4 
give us the MSE values for each pair of original 
POLSAR/reconstituted images of the proposed method and 
the standard PCA method, respectively. For the proposed 
method, the MSE values vary from 0.50 to 3.25. The aver-
age MSE value of the reconstitution process is approxi-
mately equal to 2.25, which is an acceptable error and it 
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reflects that the original and reconstituted images are very 
similar. This means that the proposed method represents 
data compression by a factor of 2. For the standard PCA 
method, the reconstitution process presents a less broad in-
terval of the reconstitution errors, from 2.05 to 3.45. The 
average value of the error of the reconstitution process is 
equal to 2.50. However, we note that the smallest value, 
greatest value, and the average value of the error of the stan-
dard PCA method are larger than those of the proposed 
method. This implies that the proposed method is more ef-
fective in the data compression with a minimal loss of the 
original information. This can be justified by the fact that the 
statistics computed in the logarithmic domain are com-
pletely different to those computed from the original data. 

5. CONCLUSION  

The suggested method for POLSAR image analysis is full 
based on an algebraic statistical formulation inspired from 
the well-developed aspects of the matrix theory and compu-
tations. It is based on so-called the simultaneous diagonali-
zation procedure of two matrices via one orthogonal matrix. 
From the mathematical point of view, the method is well 
justified. This renders easily and clear the implementation 
procedure. Experiments were performed with the real 
POLSAR. Comparative study between the proposed method 
and the standard method of PCA in the logarithmic domain 
has been shown that the proposed method exceeds largely 
the performances of the standard method. The results of the 
proposed method are satisfactory in terms of data compres-
sion ability, speckle noise reduction, and image enhance-
ment. However, the comparative study, performed between 
the proposed method and the PCA-ICA neural network 
method, shows that, in general, the two methods give ac-
ceptable results in terms of scene interpretation and data 
compression and they resemble each other in this sense. But 
the PCA-ICA neural network model is superior in terms of 
image quality because the ICA part of the model consists of 
treating the speckle effect, which has a non-Gaussian distri-
bution. While the new proposed method used only the co-
variance matrices of both data and noise and so it can not 
deal with the non-Gaussian distributions. Note that, for the 
mapping purpose from the remote sensing data, the use of 
the high quality images in the classification process is of 
importance to improve the accuracy of the classification. In 
the future investigation, we will try to develop a new 
method that accumulate the advantages of each method 
while avoiding their disadvantages by exploiting, for exam-
ple, the concept of the simultaneous diagonalization for di-
agonalising the higher order statistics of the POLSAR data. 
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(a) C Band-HH                                    (b) C Band-HV                                  (c) L Band-HH                                     (d) L-Band-HV 
 

Figure 1 - The four original POLSAR images 
 
 
 
 
 
 
 
 
 
 
 
 
(a) First IC image                  (b) First new image             (c) Second new image            (d) Third new image             (e) Fourth new image 
 

Figure 2 - The four new extracted images using the proposed statistical method 
 
 

Table 1. Signal-to-Noise Ration (SNR) values in the original POLSAR images 
 

Original images C Band-HH C Band-HV L Band-HH L Band-HV 
SNR values 4.205 8.529 12.575 18.840 

 
Table 2. Signal-to-Noise Ration (SNR) values in the extracted images  

 

Extracted images First image Second image Third image Fourth image 
SNR values 26.620 3.978 3.247 2.022 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 - The Mean-Square-Error (MSE) of the reconstitution                             Figure 4 - The Mean-Square-Error (MSE) of the reconstitution  
process (using the first two extracted images produced by                                  process (using the first two PC images produced by the stan- 
the proposed method)                                                                                            dard PCA method in the logarithmic domain) 
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