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ABSTRACT

In this paper we present a novel method for multiframe blind
deblurring of noisy images. It is based on minimization of
the energy criterion produced in the frequency domain us-
ing a recursive gradient-projection algorithm. For �ltering
and regularization we use the local polynomial approxima-
tion (LPA) of both the image and blur operators, and para-
digm of the intersection of con�dence intervals (ICI) applied
for selection adaptively varying scales (window sizes) of LPA.
The LPA-ICI algorithm is nonlinear and spatially-adaptive
with respect to the smoothness and irregularities of the im-
age and blur operators. Simulation experiments demonstrate
e¢ ciency and good performance of the proposed deconvolu-
tion technique.

1. INTRODUCTION

Image processing based on multiple observations of one scene
aims to enhance comprehensive restoration quality, often
when knowledge about image formation is incomplete. Clas-
sical �elds of application are the astronomy, remote sensing,
medical imaging, etc. Multisensor data of di¤erent spatial,
temporal, and spectral resolutions are exploited for image
sharpening, improvement of registration accuracy, feature
enhancement, and improved classi�cation. Other examples
can be seen in digital microscopy, where the same specimen
may be recorded at several di¤erent focus settings; or in mul-
tispectral radar imaging through a scattering medium which
has di¤erent transfer functions at di¤erent frequencies.
Image restoration is an inverse problem which assumes

having a prior information about the formation model. This
model includes all sorts of distortions related to the im-
age degradation. For instance, the atmospheric turbulence,
the relative motion between an object and the camera, the
out-of-focus camera, the variations in optical and electronic
imaging components, etc.
Conventionally, the image acquisition is modelled by the

convolution with the point-spread function (PSF) and noise.
The PSF introduces low-pass distortions into an image which
are called often as blur. When the blur is unknown, the
image restoration becomes a blind inverse problem or blind
deconvolution. For multiple observations of one scene, it is
a multiframe, or multichannel, blind inverse problem.
A theoretical breakthrough on the blind and non-blind

deconvolution techniques has been done in works on perfect
blur and image reconstruction. With the blur functions sat-
isfying certain co-primeness requirements the existence and
uniqueness of the solution is guaranteed under quite unre-
strictive conditions, i.e. both the blur and the original im-
age can be determined exactly in the absence of noise, and
stably estimated in its presence [1, 2, 3].
A number of works have been done to deal with noisy data.

In particular, the blind deconvolution based on the Bussgang
�lters is proposed in [4]. The inverse �lter is build as a non-
linear approximation of the optimal Wiener deconvolution
�lter.

Blind noise-resistant deconvolution algorithms based on
the least square method has been proposed in [5]. The cri-
terion includes the standard quadratic �delity term as well
as a quadratic term of the cross-channel balance. Overall,
the criterion is nonquadratic as the total variation (TV) and
Mumford-Shah energy functionals are used as the regular-
izators. These nonquadratic terms, or penalty functions, of
the criterion result in a nonlinear edge-preserving �ltering
[7, 8, 9]. It is shown in [5] that the proposed algorithm using
this sort of regularization performs quite well.
The novel approach obtained as a further development

of [5] was proposed in the recent paper [6]. The main em-
phasize of this work is done on multichannel deblurring of
spatially misaligned images. The proposed algorithm does
not require the accurate size of supports of blur functions,
and the observed images are not supposed to be perfectly
spatially aligned.
The technique proposed in this paper is based on the fre-

quency domain representation of the observation model. One
of the bene�ts of this approach concerns the ability to work
with large images and with large supports of PSFs. The re-
cursive procedure completed by the spatially-adaptive LPA-
ICI �lters works as a spatially-adaptive regularizator for the
blur-operator inversion. For non-blind image deconvolution
this spatially-adaptive LPA-ICI inverse has been presented
in [10].
Simulation experiments show the e¢ ciency of the restora-

tion algorithm which demonstrates good convergence and
high quality image restoration. The algorithm is quite robust
with respect to the support sizes used in the PSF estimation.

2. OBSERVATION MODEL

Consider a 2D single-input multiple-output (SIMO) linear
spatially invariant imaging system. Such a system is appro-
priate for the model of multiple cameras, multiple focuses
of a single camera, or acquisition of images from a single
camera through a changing medium. The input to this sys-
tem is an unknown image y(x); x 2 X; where X = fx1; x2 :
x1 = 1; 2; :::; n1; x2 = 1; 2; :::; n2g; of the size n1 � n2. This
image is distorted by unknown �nite impulse response func-
tions modelled by the PSFs vj(x), j = 1; :::; L. It is assumed
that vj(x) are discrete spatially invariant. The discrete con-
volutions of the input y(x) and the PSFs vj(x) are degraded
by the additive white Gaussian noise to produce the observed
output images:

zj(x) = (y ~ vj)(x) + �j�j(x); j = 1; :::; L. (1)

It is assumed that the noise in each channel is uncorre-
lated with the noise from other channels and �j(x) have the
Gaussian distribution N (0; 1). The parameters �j are the
standard deviations of the noise in the channels.
The problem is to reconstruct both the image y and the

PSFs vj from the observations fzj(x) : x 2 X, j = 1; :::; Lg.
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3. GRADIENT-PROJECTION ALGORITHM

Using the Parseval theorem,
P

x y
2(x) =P

f jY (f)j
2=(n1n2), we introduce the following basic

quadratic criterion loss-function:

J =

LX
j=1
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f jVij2
: (3)

Here, Zj(f); Y (f); and Vj(f) are the Fourier transforms
(FTs) of the signals zj(x); y(x), and vj(x); respectively. For
the sake of simplicity, we do not show in the formulas the fre-
quency argument f . The symbol Ff�g is used for the Fourier
transform.
The necessary unconstrained minimum conditions for z

can be written as @Y �J = 0; @V �
j
J = 0; j = 1; :::; L; for any

frequency f . Considering dij as a constant parameter, we
�nd after elementary manipulations that
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where the star (�) stays for the complex-conjugate variable.
The estimates of the signal and the PSFs are solutions of

the following problem:

(ŷ; v̂) = arg min
y2Qy;vj2Qvj

J; (6)

where the admissible convex sets Qy for y and Qvj for
vj are de�ned as Qy = fy : 0 � y � 1g ; Qvj =�
vj :
P

xvj(x) =1; vj(x) �0;vj(x) =0 if jx1j> �; jx2j> �
	
:

The sets Qvj impose the positivity and normalized mean
value assumptions on PSFs vj : The parameter � > 0 de�nes
the size of the support of vj(x).
The recursive projection gradient algorithm is used for so-

lution of (6). Firstly, the values Y (k) and V (k)
j are calculated:

Y (k) = Y (k�1) � �k@Y �J(Y (k�1); V (k�1)); (7)

V
(k)
j = V

(k�1)
j � �k@V �

j
J(Y (k); V (k�1)); (8)

where k = 1; :::; �k > 0 and �k > 0 are step-size parameters.
The corresponding gradient components are given in (4)-(5).
Secondly, Y (k), V (k)

j are projected onto the sets Qy; Qvj :

PQyfyg = max f0;min(1; y)g ; (9)

PQvj fvjg = vj=
X
x

vj(x); vj � 0, (10)

vj(x) = 0 if jx1j > �; jx2j > �.

The initialization
�
Y (0); V

(0)
j

�
is assumed in (7)-(8). The

normalization of the PSFs can be done in the frequency

domain by replacing V (k)
j on V (k)

j =V
(k)
j (0), as V (k)

j (0) =P
x v
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j (x), where v(k)j (x) = F�1

n
V
(k)
j (f)

o
.

The projection on Qy requires the inverse FT y(k)(x) =

F�1fY (k)(f)g with the projection of y(k)(x) calculated ac-
cording to (9).
The ill-conditioning of the considered inverse problem

means that the criterion J has di¤erent scale behavior for
di¤erent frequencies. In order to enable stable iterations for
all frequencies the step-sizes �k and �k should be small and,
as result, the partial convergence rates on Y (k) and V (k)

j can
be very slow.
For the considered frequency domain calculations, a be-

havior of the algorithm on the variables Y and Vj is de�ned
mainly by the second order derivative HY �Y = @Y @Y �J for

Y and the Hessian matrix HV �V T =
�
@Vi@V �

j
J
�
i;j
for V .

The convergence rate of the algorithm (7)-(8) can be es-
sentially improved using the diagonal terms of the Hessian
matrix HV �V T and HY �Y as scaling factors of the step sizes:
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1
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Substitution of HY �Y and HV �
j Vj

into (11)-(12) gives the
following �nal formulas for the iterations:
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where d(k�1)ij are calculated in (3) for Vj = V
(k�1)
j .

Some of the restrictions de�ning Qy and Qvj are not prin-
cipal and imposed only in order to improve the convergence
and the accuracy of the algorithm. In particular it concerns
the requirement 0 � y � 1.

4. LPA-ICI ADAPTIVE DENOISING

The adaptive LPA-ICI �ltering algorithm is described in a
number of publications [10, 11]. It forms a bank of the di-
rectional linear �lters with kernels gh;� obtained by LPA. A
rotated directional nonsymmetric kernel gh;� is used with
the angle � which de�nes the directionality of the �lter,
and h as a length of the kernel support (or a scale para-
meter of the kernel) in this direction. The directionality of
the kernel is de�ned by the non-symmetric window-function
used in the LPA. The directional estimates are calculated
using the convolutions byh;�(x) = (gh;�~ zj)(x) or, in the fre-
quency domain, as the products of the corresponding FTs:
Gh;�(f) � Zj(f); where Gh;� = Ffgh;�g.
The non-linearity of the adaptive �ltering is incorporated

into the ICI rule. This ICI is the algorithm for selec-
tion of the adaptive scale parameter h for every estimation
pixel x. The estimates byh;�(x) are calculated for a grid of
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Figure 1: Observations of the noisy blurred "Testpat1" im-
ages.

Figure 2: Initial guess, calculated as the mean of the three
observed images, the estimate and estimation errors.

h 2 H = fh1; h2; :::; hJg, where h1 < h2 < ::: < hJ . The
adaptive scale is de�ned as the largest h+ of those scales
in H which estimate does not di¤er signi�cantly from the
estimates corresponding to the smaller window sizes.
This common idea is implemented as follows. We

consider a sequence of con�dence intervals Ds =�byhs;� (x)� ��ŷhs;� ; byhs;�(x) + ��ŷhs;� � ; s = 1; ::; J; where
� > 0 is a parameter and �ŷhs;� is standard deviation of the

estimate byhs;� computed as �ŷhs;� =�qPx g
2
hs;�

(x):

The ICI rule is stated as follows: consider the intersection
of the con�dence intervals Is =

Ts
i=1Di and let s+ be the

largest of the indices s for which Is is non-empty. Then the
optimal scale h+ is de�ned as h+ = hs+ and, as result, the
optimal scale estimate is byh+;� (x).
The parameter � is a key element of the algorithm as it

says when a di¤erence between estimate deviations is large
or small. Too large value of this parameter leads to signal
oversmoothing and too small value leads to undersmoothing.
In this paper we treat � as a �xed design parameter.
Optimization of h for each of the sector estimates yields

the adaptive scales h+(�) for each direction �. The union of
the supports of gh+(�);� is considered as an approximation
of the best local vicinity of x in which the estimation model
�ts the data. The �nal estimate is calculated as a linear
combination of the obtained adaptive directional estimatesbyh+;� (x) :
It is convenient to treat this complex LPA-ICI multidi-

rectional algorithm as an adaptive �lter with two inputs z
and �; and the one output ŷ. The input-output equation
can be written as ŷ = LI fz; �g by denoting the calculations
imbedded in this algorithm as an LI operator.

5. BLIND DECONVOLUTION ALGORITHM

Now we are in a position to describe the developed blind
multichannel deconvolution algorithm.
1. Initialization : We use the Gaussian density for v(0)j and

the mean of the observed images y(0) =
PL

j=1 zj(x)=L as the
initial estimates.
2. Image estimation : Calculate Y (k) according to (13) with-
out projection.

Figure 3: The estimates and true PSFs of the three channel
imaging system

3. Image �ltering : Filter Y (k) by the LPA-ICI algorithm as
following.

3a. Calculate the inverse FT y(k) = F�1
n
Y (k)

o
.

3b. Calculate the estimate of the standard deviation �y(k)
of the noise in y(k) using the median estimate of the signal�s
di¤erences (e.g. [10, 11]).
3c. Filter y(k) according to the algorithm: y(k) ,
LI

n
y(k); �y(k)

o
.

4. Image projection :

4a. Project y(k) onto the segment [0; 1], y(k) , PQy
n
y(k)

o
;

according to (9).

4b. Calculate Y (k) = F
n
y(k)

o
.

5. PSF estimation : Calculate V (k)
j according to (14) with-

out �ltering and projection. Repeat these calculations Kint

times. This internal iterations imbedded in the main recur-
sive algorithm are used to accelerate the convergence rate of
the algorithm.
6. PSF projection :

6a. Calculate v(k)j = F�1
n
V
(k)
j

o
.

6b. Project the PSFs estimates v(k)j , PQvj

n
v
(k)
j

o
accord-

ing to (10).
7. PSF �ltering : Filter v(k)j by the LPA-ICI algorithm:

7a. Calculate the standard deviation of the noise in v(k)j

similarly to (3c).
7b. Filter v

(k)
j according to the algorithm: v

(k)
j ,

LI
�
v
(k)
j ; �

v
(k)
j

�
, j = 1; :::; L.

8. Increase k and repeat steps (2)� (8) K times.
Note that the LPA-ICI �ltering-regularization is embed-

ded in the recursive algorithm introduced originally in the
form (13)-(14). This LPA-ICI �ltering is produced in the
spatial domain and requires the backward and forward FT
of the frequency domain estimates V (k)

j , Y (k). Operations
in the frequency domain (13)-(14) do not impose restric-
tions on the support size of PSFs vj : However, the projection

PQvj

n
v
(k)
j

o
means that the maximal size of PSFs v(k)j does

not exceed a �xed value, which is 15�15 in simulation results
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Cameraman Lena Testpat Text Boats
BSNR PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE
20 24.6 8.79 26.12 8.44 19.5 16.0 22.8 7.86 26.6 8.14
30 28.8 5.55 31.1 4.90 24.2 8.57 32.0 2.65 31.2 5.11
40 33.0 3.73 35.7 3.05 25.7 5.75 36.6 1.19 34.8 3.49
50 38.7 2.17 38.7 2.15 38.0 1.66 37.6 0.90 36.9 2.75

Table 1: PSNR and MAE criteria values for the deblurred grayscale estimates.

given in the next section. The reduced size of PSF reduces
the amount of necessary computations.

6. SIMULATION EXPERIMENTS

6.1 Restoration of grayscale images

We consider three channel observations with the follow-
ing di¤erent PSFs: Box-car 9 � 9 uniform; Box-car 7 � 7
uniform rotated by 450; "Inverse-quadratic" v (x1; x2) =
(1 + x21 + x22)

�1, x1; x2 = �7; : : : ; 7 (Fig.3). The level
of noise in the observations zj , j = 1; 2; 3; is such
that the blurred signal-to-noise ratio (BSNR) BSNR=

10 log10

�
1

n1n2�
2
j




(y ~ vj)(x)� 1
n1n2

P
~x(y ~ vj)(x)




2
2

�
is equal

to 20, 30, 40 or 50 dB.
The narrow directional supports of the LPA kernels gh;�

are de�ned by the two-dimensional scale h = (h1; h2) with
h1 and h2 de�ning the length and the width of the kernels
respectively.
For image �ltering these supports are line-wise given by

the set H = f(1; 1); (2; 1); (3; 1); (5; 1); (7; 1); (11; 1)g. All
these kernels have the width h2 = 1. For the PSF we
use quadrant support kernels with equal lengths and widths
H = f(1; 1); (2; 2); (3; 3); (5; 5); (7; 7); (11; 11)g. The zero or-
der LPA with uniform window functions is used for gh;�:
Thus, all the estimates are calculated as the sample mean of
observations included in the kernel supports.
For the image the estimates and the adaptive scales h+� (x)

are calculated for eight directions �(i) = (i � 1)�=4; i =
1; :::; 8, with the parameter � = 0:9. For the PSFs the esti-
mates and the adaptive scales h+� (x) are calculated for four
directions �(i) = (i� 1)�=2; i = 1; :::; 4, with the parameter
� = 1:5.
These ICI adaptive directional estimates are aggregated

in the �nal one using the weighted mean of the directional
estimates with the weights equal to the inverse variances of
these estimates [10],[11].
Observations of the 256�256 image �Testpat�image cor-

rupted by an additive zero-mean Gaussian noise (BSNR= 40
dB) are shown in Fig.1. The initial guess as well as the esti-
mate and the estimation errors are shown in Fig.2. We may
note that the reconstruction is nearly perfect, in particular
in the di¢ cult central part at the image.
The developed frequency domain technique can be used

without restrictions on the size of the supports of the PSFs.
However, even quite approximate information about the
maximal sizes of the PSFs improves the convergence rate
as well as the quality of image and PSFs restoration. We as-
sume that the supports of PSFs vj do not exceed size 15�15:
This step is important also from the viewpoint of reducing
computational cost of the iterative scheme.
The parameter �1 balancing the �delity and the channel

equalization terms is a design parameter of the algorithm
and essentially a¤ects the accuracy. It is �xed to be equal
to 1.2 in the scheme. It follows from the experiments that
the in�uence of the regularization parameters �2 and �3 is
insigni�cant and we �x them to be equal to 10�7. It has been
found for various scenarios that good results are obtained for
�k = 0:6 and �k = 0:9. The total number of iterations in

the algorithm K is �xed to be 20. The number of internal
iterations Kint is �xed to be 7.
The true three PSFs and their estimates obtained for Test-

pat image are shown in Fig.3. It is clearly seen that they are
well-restored despite of some minor artefacts.
The blurring e¤ects given by the used PSFs are signi�cant,

as it can be seen in Fig.1. Nevertheless, for the well-known
test images used in our experiments the restoration is very
good.
The numerical evaluation can be seen in Table 1 for a vari-

ety of standard test grayscale images and noise settings. All
of the images of the sizes 256 � 256 except Boats, which is
512� 512. The �rst column of the table shows BSNR values
for observations zj . In this table following numerical error
values are presented: peak signal-to-noise ratio (PSNR) in
dB, PSNR= 20 log10(maxx jy(x)j=RMSE); mean absolute er-
ror (MAE), MAE=

P
x jy(x)� ŷ(x)j =n1n2: As it is seen the

quality of restoration is good and proves that the proposed
technique is e¢ cient for noisy data.

6.2 Restoration of color images
As a test image for blind deconvolution of color images we
used 256� 256 RGB Fruits image (Fig.4c). We assume that
blurring operator vj for a single observation zj = (R;G;B) is
the same for all color R (red); G (green); and B (blue) chan-
nels. The PSFs vj used are the same as for grayscale images
experiments provided in the previous section. The level of
noise is set to be 40 dB for each channel. The observations
zj obtained are illustrated in Fig.4d-f.
The natural approach to reconstruction is the use of (13)-

(14) directly to these corrupted color channels separately.
The parameter � for the ICI rule is �xed to be 0:9 for all
color channels: The restored color image is shown (Fig.4a).
The PSNR and MAE values are (34:7 33:3 32:5) and (3:21
3:83 4:49) for R; G; and B color channels, respectively.
However, usually natural color images are highly corre-

lated. We use the opponent color space transformation in
order to decorrelate these color signals [12]:"

I1
I2
I3

#
=

"
1=3 1=3 1=3
1=2 0 �1=2
1=4 �1=2 1=4

#"
R
G
B

#
;

where I1 is one achromatic channel, and I2; I3 are two oppo-
nent color channels.
As a result of color space transformation, I1 has higher

SNR which makes problem of deconvolution easier, and I2; I3
have lower SNR but image details, like edges and smooth
areas, are emphasized more. Therefore, it is reasonable to
use lower � for I1 in order to avoid oversmoothing and due to
lower level of noise (� = 0:7 in our experiments), and higher
� for I2; I3 to suppress noise as much as possible (� = 0:9
and 1:0). The results of image restoration are illustrated in
Fig.4b. The PSNR and MAE values are equal to (35:5 34:9
33:1) and (3:01 3:25 4:24), respectively for the channels R,
G and B of the image in the RGB color space. These PSNR
values are about 1 dB higher then those for straightforward
restoration in RGB color space.
It is worth to stress that the di¤erence in visual qual-

ity evaluation is signi�cant also. Comparison of Fig.4a and
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a) b) c)

d) e) f)

Figure 4: Blind reconstruction in RGB (a) and Opponent color space (b) of Fruits image (c) from 3 blurred noisy observa-
tions: d) blurred with boxcar 9� 9 PSF; e) blurred with rotated by 450 boxcar 7� 7 PSF; f) blurred with inverse-quadratic
7� 7 PSF.

Fig.4b clearly shows that 4b is more natural and tiny details
are preserved very well.
The MATLAB implementation of the developed algo-

rithms is available at http://www.cs.tut.fi/~lasip/ to fa-
cilitate reproduction of results.

7. CONCLUSIONS

In this paper we propose an iterative multichannel blind de-
convolution algorithm of noisy images. The incorporated
denoising and regularization based on the spatially adaptive
LPA-ICI technique. Simulations produced for both grayscale
and color images show high quality of restoration in terms of
objective numerical criteria and subjective visual evaluation.
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