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Abstract—This paper proposes new recursive adaptive 
beamforming algorithms for uniform concentric circular array 
(UCCA) that has nearly frequency invariant (FI) characteristics.  
By using a fixed compensation network, the far field pattern of a 
UCCA frequency invariant beamformer (FIB) is determined by a 
set of weights and it is approximately invariant over a wide range 
of frequencies. New recursive adaptive beamforming algorithms 
based on the least mean square (LMS) and recursive least square 
(RLS) algorithms and the Generalized Sidelobe Canceller (GSC) 
structure are proposed to address the high computational 
complexity of the sample matrix inversion (SMI) method 
proposed previously by the authors.  Simulation results show that 
the proposed adaptive FI-UCCA beamformer requires much fewer 
variable taps than the conventional UCCA for the same steady-
state performance, while offering much faster convergence speed. 

I. INTRODUCTION 
Beamforming using sensor arrays is an effective method for 

suppressing interferences whose angles of arrival are different 
from the desired looking direction. They find important 
applications in radio communications, sonar, radar, and acoustics 
 [1]- [3]. Traditional adaptive broadband beamformer usually 
employs tapped-delay lines or linear transversal filters with 
adaptive coefficients to generate appropriate beam patterns for 
suppressing undesirable interference. This usually requires 
considerable number of adaptive coefficients resulting in a rather 
long convergence time and high implementation complexity. 
These problems can be remedied by using subband decomposition 
technique, partial adaptation or using frequency invariant 
beamformers (FIB)  [4]- [7],  [9]. In FIB, a beam-forming network 
is used to generate beam pattern with approximately frequency 
invariant (FI) characteristics over the frequency band of interest. 
They can attenuate broadband directional interference using an 
adaptive beamformer with very few number of adaptive filter 
coefficients  [5]. One of the widely studied FIB is the uniform 
linear array (ULA) FIB  [4]- [8].  Due to the geometry of ULA, its 
angular resolution at boresight is better than that at its end-fire. In 
addition, it allows many efficient direction-of-arrival (DOA) 
detection algorithms to be developed. For example, the MUSIC 
algorithm  [10] provides a high resolution method for detecting the 
angle of arrival (AoA) of the signal sources based on the subspace 
approach.   The MUSIC algorithm is also applicable to DOA 
estimation of wideband coherent sources by performing the 
algorithm in beamspace using ULA-FIB  [9].  Besides AoA 
estimation of wideband sources, adaptive interference suppression 
using beamspace adaptive beamforming  [5] is also very attractive 
because of the small number of adaptive coefficients required and 
the possibility of employing partial adaptation, yielding faster 
convergence and fewer number of high speed variable multipliers. 

Recently, electronic steerable uniform-circular arrays 
(UCAs)  [11] with frequency invariant characteristics were studied 
in  [12], where a fixed beamforming network is used to 
compensate for the frequency dependence of the array.  
Unfortunately, the passband of a UCA is rather narrow because it 
is closely related to its radius of the array. To obtain a frequency 
invariant characteristic over a large bandwidth, uniform concentric 
circular arrays (UCCA) are proposed in  [13] and  [14]. The basic 

idea of the FI UCCA is to transform each snapshot sampled by the 
array to the phase modes via an Inverse Discrete Fourier 
Transform (IDFT).  The transformed data is then filtered to 
compensate for the frequency dependence of the phase modes. 
Finally, these frequency invariant phase-modes are linear 
combined using a set of weights or coefficients to obtain the 
desired frequency invariant beam patterns.  These weights, which 
govern the far field pattern of the UCCA, can be designed by 
conventional 1D digital filter design techniques such as the Parks-
McClellan algorithm to form fix beam patterns. Alternatively, 
these coefficients can be varied by an adaptive algorithm to form 
an adaptive beamformer with approximately frequency invariant 
characteristics. The compensation filters in the fixed beamforming 
network are designed using second order cone programming 
(SOCP)  [16] [17].  In  [14], adaptive beamforming of FI-UCCA 
using the sample matrix inversion (SMI) method was studied and 
satisfactory performance was obtained.  One disadvantage of  the 
SMI method, however, is the high computational complexity, 
since it requires the inversion of the autocorrelation matrix. In this 
paper, new recursive beamforming algorithms for the FI-UCCA 
based on the least mean square (LMS) and recursive least square 
(RLS) algorithms and the Generalized Sidelobe Canceller (GSC) 
 [19] structure were developed.  A   conventional tapped-delay line 
based adaptive UCCA beamformer without using the 
compensation network is also developed. Simulation results show 
that by using one tap per phase mode in the proposed adaptive 
UCCA-FIB, much faster convergence than the conventional 
UCCA adaptive beamformers can be achieved. Also, the 
performance of the latter levels off when the length of the tapped-
delay line is increased beyond 10. After which, the performances 
are comparable to the one-tap FI-UCCA beamformer. In other 
words, the proposed adaptive FI-UCCA beamformer requires 
much fewer variable taps than the conventional UCCA.  The paper 
is organized as follows: Sections II briefly reviewed the principle 
and design of the broadband FI-UCCA. The proposed broadband 
adaptive beamforming algorithms using the FI-UCCA are 
presented in section III. Design examples and simulation results of 
the broadband beamforming using the proposed UCCA are given 
in Section IV.  Conclusions are drawn in Section V. 

II. FI UNIFORM CONCENTRIC CIRCULAR ARRAYS 
The structure and design of the frequency invariant uniform 

concentric circular array (FI-UCCA)  [13],  [14] is briefly reviewed 
in this section. Figure 1 shows the geometry of a UCCA with P 
rings and each ring has Kp omnidirectional sensors located at 

}sin,cos{
pp kpkp rr φφ  (represented as Cartesian Coordinate with 

the center as the origin) where rp is the radius of the pth ring, 
Pp ,,1"= , ppk Kk

p
/2πφ =  and 1,,0 −= pp Kk "  as shown in 

Figure 2. In UCCAs, the inter-sensor spacing in each ring is fixed 
at 2/λ  where λ  is the smallest wavelength of the array to be 
operated and is denoted by sλ .  The radius of the pth ring of the 
UCCA is given by 
 ))/sin(4/( psp Kr πλ= . (1) 
For convenience, this radius is represented as its normalized 
version  ))/sin(4/(1/ˆ pspp Krr πλ == .  The steering vector of the  
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pth ring of a UCCA can be written as: 
Trjrjrj

p
pKppp eee ][),( )cos(sinˆ)cos(sinˆ)cos(sinˆ 110 −−−−=

φφθαωφφθαωφφθαωφω "a , (2) 
where max/ ff s=α denotes the ratio of the sampling frequency fs 
to the maximum frequency fmax, θ  is the elevation angle that is 
measured from a reference imaginary axis perpendicular to the 
horizontal plane, φ  is the azimuth angle measured from a 
reference imaginary axis on the horizontal plane of the sensors. 
The UCCA employed in this paper has an elevation angle of 

2/πθ = , i.e. on the horizontal plane. 
The structure of the FI-UCCA beamformer is shown in 

Figure 3. After appropriate down-conversion, lowpass filtering 
and sampling, the sampled signals of the pth ring from the 
antennas are given by the vector 

Tp
K

pp
p nxnxnxn

p
]][][][[][ )(

1
)(

1
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0 −= "X , which is called a snap-

shot at sampling instance n. Each snapshot is IDFT transformed to 
obtain the phase-mode signal ][)( nV p

mp
, ,...,p p pm L L= − , 

1, ,p P= … . Each phase mode is then filtered or compensated by a 
compensation filter with impulse response ( ) ( )

p

p
m nh . The 

compensated signals are then inputted to the adaptive 
beamforming network to form the output of the entire adaptive 
UCCA-FIB.  Since the compensated phase mode signals are 
relatively frequency invariant in the desired frequency band, very 
few taps are required in the subsequent adaptive beamforming 
network for extracting the desired signals and suppressing the 
interferences.  In our simulations, one tap per phase mode is found 
to give satisfactory performance.  In other words, the adaptive 
beamforming network is working like a narrowband adaptive 
beamformer. The detail derivation of the spatial-frequency 
response of the UCCA was discussed in  [13] and  [14].  Due to 
space limitation, we only give the response of the array as follows: 
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where )(⋅mJ  is the Bessel function of the first kind and )()( ωp
mH  

is the frequency response of the compensation filter in  the mth 
phase mode, mg  is the spatial weight coefficient and Kp is the 
number of sensors in the pth ring. From (3), it can be seen that if 
the filters ( ) ( )p

mH ω  are designed in such a way that 
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⋅ ≈∑  for [ , ]L Uω ω ω∈ , (4) 

where Lω  and Uω  are respectively the lower and upper 
frequencies of interest, then the beamformer in (4) will be 
approximately frequency invariant within [ , ]L Uω ω ω∈  and 
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≈ ∑ . (5) 

From this equation, we can see that the far field beam pattern is 
now governed by the spatial weighting { }mg  alone and it can be 
written as ( , ) ( )G Gω φ φ≈ , which is similar to that of a digital FIR 
filter with impulse response { }mg . The real-time adaptation of the 
beam pattern through the spatial weighting { }mg  to suppress 
undesired interference is simpler than traditional broadband 
adaptive arrays using tapped delay lines as we will see later in 
section IV.  

Since the left hand side of (4) is a linear function of the filter 
coefficients in ( ) ( )p

mH ω ’s, the design problem in (4) can be treated 
as a digital FIR filter design problem with all the filter outputs 
adding up to the desired response, which is equal to one.  If the 
minimax error criterion is used, the filter coefficients for ( ) ( )p

mH ω  

can be determined by second order cone programming (SOCP) 
 [16]. SOCP is a convex programming problem and the global 
optimal solution is guaranteed if it exists. Another important 
advantage of SOCP is that it is very convenient to include 
additional linear or convex quadratic constraints, such as the norm 
constraints of the variable vector, to the design problem.  It has 
been used in the optimal design of digital FIR filters and fixed 
beam broadband ULA FIBs  [15]. Due to page limitation, the 
details of the design method are omitted here. Interested readers 
can refer to [13] [14] for more information. 

III. ADAPTIVE BEAMFORMING USING UCCA FIB 
The FI-UCCA designed in the previous section can be used 

in broadband adaptive beamforming. With the FI characteristic, 
the length of the variable weight vector in the beamformer can be 
significantly reduced compared to conventional UCCAs without 
employing the compensation network. Now we consider I 
broadband signals ][nsi , i=1,…,I , which impinge a P-ring 
UCCA respectively at azimuth angles iφ , i=1,…,I . The frequency 
response of the output signal can be written as: 

[ ]∑
−=

+Φ=
P

P

m

L
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where T
ISS )](),...,([)( 1 ωωω =S  is the frequency response of the 

I incoming signals , )](),...,,([),( 1 IGGG mmm
aa φωφω =Φa  is the 

spatial-frequency response of the FI-UCCA array in the mth phase 
mode that evaluated at the angles of iφ , i=1,…,I  and )(ωmN  is 
the frequency response of the sensor noise that is transformed to 
phase mode. From (3) and (4), we know that ),( ωΦ

mGa  is 

designed to be frequency invariant and hence )(),( φωφ
mm GG aa ≈ , 

[ , ]l uω ω ω∈ . Thus, the frequency response of the beamformer 
output is simplified to: 

∑
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P

P

m

L
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For notation convenience, we shall replace the approximation sign 
by the equality sign and assume that the errors are absorbed into 
the sensor noise terms ( )mN ω . Taking the IDFT, one gets the 
time-domain expression of the output as follows: 
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where [ ]m nη , with FT ( )mN ω , is the output noise of the mth 
phase mode of the beamformer, and _ [ ]CPM my n  is the mth 
compensated phase mode signal. To be consistent with the 
literature, let the weight vector 1[ , , ]T

Mw w=g w= " , the 
beamforming output can be written as: 

][][)(][][ nnnny CPM
H
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where T
GGG PLpL

)](,),([)( ΦΦ=Φ
−

aaa "  is the ( )M I×  source 

direction matrix with )(),( Φ≈Φ
mm GG aa ω  given by (6). 

T
LCPMLCPMCPM nynyn

PP
]][,],[[][ __ "−=y  is the compensated phase 

mode vector, and [ ]CPM nη _ _[ [ ], , [ ]]
P P

T
CPM L CPM Ln nη η−= "  is the 

noise vector containing the noises at the compensated phase 
modes of the beamformer. 

Assume that the  desired  signal  impinges  the array  at  an 
azimuth angle dφ . To recover the desired signal from the array 
output, we firstly employ the classical Minimum Variance 
Beamformer (MVB)  [17] (or minimum variance distortion-less 
response MVDR beamformer).  The basic idea of MVB is to 
choose the weight vector w such that the output energy of the 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



array is minimized, while requiring the response of the array in the 
looking direction  to be 1, hence the name MVDR. The MVDR 
problem that employing FI-UCCA can be written as: 

minimize _
H

y CPMw R w  

subject to 1)( =dG
H φaw , 

(10) 

where ]}[][{_ nnE H
CPMCPMCPMy yyR ⋅=  is the auto-correlation of 

the data matrix.  This constrained optimization can be solved 
analytically and the optimal solution is: 

))()(/()( 1
_

1
_ dGCPMyd

H
GdGCPMyopt φφφ aRaaRw −−= . (11) 

Given a series of snapshots ][nCPMy , say n=1,…,K, the 
autocorrelation matrix can be estimated as 

_
1

ˆ [ ] [ ]
K

H
y CPM CPM CPM

n
n n

=

=∑R y y .  Thus, optw  can be obtained by 

inverting the matrix _
ˆ

y CPMR  and substituting it into the right hand 
side of (11).  This is called the sample matrix inversion (SMI) 
method.  

As mentioned earlier, adaptive beamforming using SMI 
method and the FI-UCCA was studied in  [14].  The SMI method, 
however, is very computational expensive because it requires the 
inversion of the autocorrelation matrix.  Alternatively, the weight 
vector w can be solved recursively using adaptive filtering 
algorithms such as the Least Mean Squares (LMS) algorithm and 
the recursive least squares (RLS) algorithm using a structure 
called Generalized Sidelobe Canceller (GSC)  [18]. Figure 4 shows 
the structure of the GSC-based beamformer.  The weighting 
vector w is decomposed into two parts: the fixed part cw  and the 
adaptive part aw . The fixed weight vector cw , as shown in the 
upper part in Figure 4, forms a main beam that is steered towards 
some assumed propagation direction. It can be obtained as: 

)()]()()[( 1
d

H
GdGd

H
GdGc φφφφ aaaaw −= . (12) 

Normally, the beam is designed to have a looking direction at 
zero degree and the desired looking direction is obtained by 
delaying the sensor inputs appropriately. In the proposed FI-
UCCA, since the direction of the beam can be readily changed by 
modulating the beam weight { }mg  with an appropriate sinusoid, 
these delay elements are unnecessary.  The adaptive part aw  is 
continuously updated in order to remove any undesired signals 
other than the looking direction from appearing at the array 
output.  A blocking matrix B is first employed to block or prevent 
the desired signal at the looking direction from entering the 
adaptive part.  Consequently, the input to the adaptive part mainly 
consists of the undesirable signals. The interference signal, after 
modifying by the adaptive weight vector aw , is then subtracted 
from the main beam in order to cancel the interference that is 
present in the main beam.  This is achieved by minimizing the 
output energy of the beamformer using either the RLS or LMS 
adaptive filtering algorithms. In the LMS algorithm, the weight 
vector aw  is updated in the following way: 

][][]1[][ * nnynn CPMaa Byww ⋅+−= µ , (13) 
where µ  is a stepsize parameter. Alternatively, if the RLS 
filtering algorithm is used, the weight vector is updated as: 

*[ ] [ 1] [ ]a a Mn n y n= − +w w K , (14) 
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 is the 

Kalman gain, [ ]nP  is the inverse of the autocorrelation matrix 
and it can be updated as 

])1[])[]([]1[(][ 1 −−−= − nnnnn H
CPMM PByKPP λ  with 

2
1[0]
δ

=P I , 2δ  is a small number to ensure that [0]P  is non-

singular initially and λ  is the forgetting factor that controls the 
tracking ability and steady state error of the RLS algorithm.   

IV. SIMULATION RESULTS 
We now evaluate, by computer simulation, the performance 

of the adaptive FI-UCCA in real-time beamforming using the 
LMS-GSC and RLS-GSC algorithms described previously. The 
FI-UCCA used in this example has two rings. The inner ring and 
the outer ring have 10 and 18 omni-directional sensors, 
respectively. The required bandwidth of the UCCA-FIB is 

[0.2 ,0.65 ]ω π π∈ .  The numbers of phase modes M of the inner 
and outer rings are respectively 9 and 17. The desired beam is 
targeted at 0o  and the beamwidth is 10o . The spatial-frequency 
response is shown in Figure 5. We can see that the beamformer is 
approximately frequency invariant. 

The desired signal and the incoherent interfering signal are 
assumed to impinge the array at angles 0º and 50º, respectively. 
The desired signal is composed of 53 sinusoidal signals with 
frequencies ranging from 80.8 10×  to 86 10×  Hz at an interval of 

80.1 10×  Hz. The interfering signal is also composed of 53 
sinusoidal signals but with frequencies ranging from 80.83 10×  to 

86.3 10×  Hz at an interval of 80.1 10×  Hz. The SIR is -20 dB. The 
additive white Gaussian noise at each sensor is assumed to have 
the same power and the SNR is 20 dB.  

The stepsize of the LMS algorithm is set to 0.015. The line 
labeled LMS in Figure 6 plots the output MSE between the 
beamforming output and the desired signal. The x-axis is the 
iteration number. The forgetting factor of the RLS algorithm is set 
to 0.999, and the output MSE of the RLS algorithm is also shown 
in Figure 6 with the line labeled RLS. The MSE outputs are 
obtained by averaging 200 independent trials and it is further 
averaged on the snapshots with a window length of 300. The 
number of the tap per phase mode is one in both algorithms. We 
can see that with the same steady state error, the LMS algorithm 
converges at around 3000 snapshot and the RLS algorithm 
converges at around 1500 snapshot. The line labeled SMI is the 
simulation results for the SMI method.  For comparison, we also 
simulated the performance of a conventional beamformer using 
the UCCA without the compensation network. The lines labeled 
UCCA 1 tap-SMI and UCCA 1 tap-LMS are the output MSEs of 
the beamformers using SMI and LMS algorithms, respectively. 
The error of the SMI algorithm is much higher than that of the 
one-tap FI-UCCA and the convergence of the LMS algorithm is 
much slower, which converges at around the 2×104 snapshot. The 
output MSE of the UCCA decreases as the length of the tapped-
delay line is increased and it levels off when the length of the 
tapped-delay line is increased beyond 10. For illustrative purpose, 
the corresponding output MSE is plotted in Fig. 6 as the line 
labeled UCCA 10 taps-SMI.  The results of using the LMS and 
RLS algorithms are very slow and it is omitted to save space.   

V.  CONCLUSION 
New broadband recursive adaptive beamforming algorithms for 

FI uniform concentric circular array (UCCA) are presented. The 
algorithms are based on the least mean square (LMS) and 
recursive least square (RLS) algorithms, and the Generalized 
Sidelobe Canceller (GSC) structure. Simulation results show that 
the proposed adaptive FI-UCCA beamformer requires much fewer 
variable taps than the conventional UCCA for the same steady-
state performance, while offering much faster convergence speed. 
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Figure 1. A UCCA with P rings and Kp-sensor at each ring. 
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Figure 2. Relationship between inter-sensor spacing and the radius of the 
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Figure 3. The block diagram of a P-ring UCCA-FIB. 
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Figure 4. The structure for GSC beamformer. 

 
 

 
Figure 5. Spatial response and frequency response of the UCCA-FIB. 

 

0 5000 10000 15000
-70

-60

-50

-40

-30

-20

-10

0

10

O
ut

pu
t M

S
E

Snapshots

UCCA 1tap -LMS

LMS

RLS SMI

UCCA 10 taps -SMI

UCCA 1 tap -SMI

 
Figure 6. The output errors of the adaptive beamformers using FI-UCCA 

and conventional UCCA. 
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