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ABSTRACT written down in the form
The paper provides comparison of three different approaches ia)
to on-line tuning of adaptive notch filters (ANF) — the algo- g(t) =y(t) — Vst —1)
rithms used for extraction/elimination of complex sinusoidal §t) = ej@(t)g(t — 1)+ pe(t)

signals (cisoids) buried in noise. Tuning is needed to ad-

just adaptation gains, which control tracking performance of £ (t)ele)

ANF algorithms, to the unknown and/or time time-varying g(t) =Im S(t-1)

rate of signal nonstationarity. The first of the compared ap- N N

proaches incorporates sequential optimization of adaptation w(t+1) = w(t) - yg(t) (2)

gains. The second solution is based on the concept of paral-

lel estimation. It is shown that the best results are achieved

when both approaches are combined in a judicious way. Suckracking properties of this algorithm are determined by two

joint sequential/parallel optimization preserves advantages ¢fser-dependent tuning coefficients: the adaptation gain

both treatments: adaptiveness (sequential approach) and @< ¢ < 1, which controls the rate of amplitude adaptation,

bustness to abrupt changes (parallel approach). and another adaptation gajn 0 < y < 1, which decides
upon the rate of frequency adaptation.

The multiple frequency algorithm can be obtained by com-
1. INTRODUCTION bining k single-frequency ANFs, given by (2), into an appro-
priately designed parallel structure - see Section 3.
Consider the problem of extraction or elimination of complex . . . : . .
multifrequency signals buried in noise Selection of adaptation gainsandy in (2) is an important
practical problem. By increasing these gains one increases
the tracking speed of an ANF algorithm, but decreases its
k i % @ (1) noise rejection capability. Decreasing adaptation gains has
y(t) = Zis(t) +v(t), s(t)=a(t)e = (1) opposite consequences. The optimal choicg aindy, i.e.
i= the choice that minimizes the mean-squared tracking errors,
is therefore always a compromise between the filter's speed
and it's accuracy. The outcome depends on the rate of nonsta-
- : ; tionarity of the identified signal. Quite obviously, if the rate
de;]ntotes .the rpeagured Z(m\)/lvsy) ﬁ:gnal arig tlr?a; \(/:ZOTple of signal nonstationarity is also time-dependent, for example
whi'e noise of variancey . /e Wit assume VRO =" if periods of fast amplitude/frequency changes are followed
ElVi(t)] = 07/2, Elvr(t)vi(1)] =0, Vt,T, wherevr(t) =  py the periods of their slow variation anite versait may
Refv(t)], vi(t) = Im[v(t)]. Since both the complex ampli- pe very difficult, if at all possible, to find fixed values gf
tudesa;(t) and the angular frequencies(t) in (1) are as-  andy that would guarantee satisfactory performance of an
sumed to vary slowly with time, the extracted/cancelled sigzdaptive notch filter under such heterogenous conditions.
nal s(t) = T ;s(t) changes in a periodic-like, but not ex- . . . . -
actly periodic manner. A typlcal way of increasing trackln_g ca_pablllt'les of adap-
. . I . tive filters is by means of automatic gain tuning — see [4]
From several available adaptive notch filtering algorithms;y, o interesting overview of different approaches to this

presented in [1], [2] and [3] we will pick a relatively new groblem. Generally speaking such on-line gain optimization
solution described and analyzed in [3]. This is by no meangan he performed using either sequential or parallel estima-

a critical choice asll algorithms referred to above have ap- (o techniques. The first case uses a single tracking algo-
prOX|mater_ the same Ioca_l traclgng properties. In partu_:ularrithm equipped with adjustable adaptation gains. The sec-
they all achieve the posterior CramRao frequency tracking onq case takes several algorithms with different gain settings,
bound for random walk frequency changes (under Gaussigfins them in parallel and compares them according to their
assumptions) - see [2], [6] for more details. predictive abilities. We will show that the best results can be

In the single frequency cask £ 1) the normalized, steady obtained if both approaches mentioned above are appropri-
state version of the ANF algorithm presented in [3] can beately combined.

wheret = 1,2,... denotes the normalized discrete tirpé,)
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2. AUTOMATIC TUNING OF AN ANF be expressed in the form
ALGORITHM
~ ~ ~ -1 ~
2.1 Pre-optimization A =pt-1) - V'(tAte-1)] "V(t,at-1)

Denote byAs(t) = §t) — s(t) the signal estimation error
and suppose that the estimated signal is governes{thy-
el®(g(t — 1), which means that variation of the instanta- _ - de*(t, it —1))
neous frequencyo(t) is the only source of signal nonsta- V/(ta(t—1)) =Re {e(t,u(t -1) ou ]
tionarity. Furthermore, assume thaft) evolves according
to the random walk (RW) model

where

de(t, At —1))

ou

where{w(t)} is a white noise sequence of variangg in-  and all derivatives are taken with respecftoDenote
dependent of v(t)}. N R

Using the approximating linear filtering (ALF) technique, Z(t) = de(t,u(t-1)) Wit) = os(t,u(t—1))
proposed by Tichavskand Handel [1] the following vari- o ou ’ o ou
ance expression was derived in [3] for the case described

w(t) = w(t — 1) +w(t) VIt At —1) AV (t -1t —2)) + ‘

above da(t. 1 A0t T
ot,ut—1 Jo(t,ut—1
2 by = JHCD) -y 00LAE-1)
2 y (M| o Db 2 H H
Ef|As(t)[7] = T2 N, O 3)
H HY rt) =V"(t, it — 1))

whereb? = |s(t)|?. o Straightforward calculations lead to
Denote by, andy, the values oft andy that minimize (3).
It is easy to check that () = y(t) — ej@(t)g(t —1)

Ho= V28, Yo=1/2¢ (4) Z(t) = VxSt - 1)+ g(t - 1)]
where the scalar coefficiedt = b202/02 — the product of wit)=et) - [1_A(I)J(t - Dl
the signal-to-noise ratib? /o2 and the variance of frequency B el@lt . -
changess? — can be regarded a measure of signal nonsta- p(t)=Im S(t—-1) [0 +iemx®)
tionarity. .
According to (4), the optimal value gfis equal to the square _ M ]}
of the optimal value ofi: y, = 2. This suggests that setting s(t-1)
y = u? may be a good way of reducing the number of design rit)=Ar(t—1)+ |Z(t)\2
degrees of freedom of an ANF algorithm from twe, (/) to R . Lmax
one (u). The resulting pre-optimized version of (2) can be H(t) = [ﬁ(t —1)— efe(t)¢ (t)}]
written down in the form r(t) 0

g(t) = y(t) — el Vgt — 1) §t) = Ut — 1)+ f()e(t)

§(t) = Vgt — 1) + pe(t) g(t) = Im £ (t)el®®

. §(t—-1)
e melet ~
ot =Im| STy Bt +1)=a(t) - G2Dg(t)
N N t+1)=x(t)—Ht)[29(t) + Ht)p(t 6

2.2 Sequential optimization where a if Xx<a
The adaptation gaip can be adjusted recursively, by mini- [x]?1 = { x if a<x<b
mizing the following local measure of fit, made up of expo- b if x>Db

nentially weighted prediction errors ) ) )
Note that the algorithm was equipped with a “safety valve”:

when the calculated value pf exceeds its upper limit, it is

1L
Vit,h) =3 AU Tg(T, p)f? truncated topmax Similarly, i is set to zero whenever the
=1 calculated value becomes negative.

The forgetting constamt (0 < A < 1), which decides upon
the effective averaging range, should be chosen solthat
A<, vt The main idea behind the parallel optimization (or multiple-

To evaluate the estimafg(t) = argmin, V (t, u) we willuse  model) approach is to run simultaneously several adaptive
the standard recursive prediction error (RPE) approach. Adilters, with fixed (different) adaptation gains, and choose at
cording to $derstdm and Stoica [7], the RPE algorithm can each time instant the most appropriate filter, namely the one

2.3 Parallel optimization
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that has shown the best performance in the “recent past”. Fo{6), which works out the estimafg(t), and two “side” fil-
lowing this line of thinking, considet ANF algorithms of ters — a “slow” filter, with the gaini(t)/J, and a “fast” one,

the form with the gaingi(t)d, whered > 1is the appropriately chosen
L multiplier. Note that the gains of the side filters are simply
ell(t) = y(t) —el®" gt 1) the rescaled versions of the gain of the center filter, i.e. side
<l @Ml 0] filters do not estimat@ on their own. Experimental results
stit)y=e SH(t—1)+p"el(t) show clearly that such joint sequential/parallel optimization
(el 0))* STAI0) preserves advantages of both treatments: adaptiveness (se-
g[ll(t) —Im[ UL ] guential approach) and robustness (parallel approach).
alt+1) =) — (uh2gl ) @) 3. ALGORITHM FOR MULTIPLE FREQUENCIES
| L 3.1 Estimation of signal components
T Let
each set to a different value gf ) — o -
A simple way of combining the estimates yielded by the MO =8O +vt), i=1...k
competing algorithms is to set If the signal components defined above were known, the
multiple-frequency sequential optimization algorithm could
_ el have been designed in a decoupled form as a collec-
st) =sl) ® N . . .
tion of single-frequency filters of the form (6), driven by
where yi(t),...,¥k(t), respectively. When such knowledge is not
~ oMo 5 available, which is a typical situation in practice, one can re-
I(t) =arg min % el (t—m)] place the outputgy (), ..., yk(t) with the following estimates
Ssbmim
andM is the length of the local analysis interval. N k
The switching rule (8) makes its choice on the basis of com- Yit) =y(t)— > S(tt-1) (10)
paring predictive abilities of different filters, but it does not o

take into account the distribution of the accumulated predic-
tion error over the set of competitive algorithms. To fur-where§(tt — 1) denotes the predicted value ®it), based
ther improve results one can replace (8) with the followingon information available at instaht- 1.
weighted estimation formula When designing multiple-frequency parallel optimization
. schemes, the estimation technique described above results
. in huge computational savings. Actually, suppose that the
St) = z c“](t)s “](t) ©) signa? hask fr%quency compo%ents, and){[hat ?(?r each com-
=1 ponenti one considerd different levels of the adaptation

: 1 L : .
where the weighting coefficientd (t),1 = 1,...,L (called 9ain: t”,.... " To realize a multiple-frequency paral-
credibility coefficients in [5]) obey lel optimization scheme, analogous to (7), one should run

in parallel and compareX different algorithms, each con-
nl(t) sisting of k subalgorithms. The competing filters corre-
= m spond to different combinations of adaptation gains, namely:
|=
' (T a T N Tl B 7L LN Vel SN (11 TI SN
M —M/2 u&”}, e {;J%L],ugu, . .,H&L]}. Even for relatively small val-
nlt) = Z el (t —m)|? , I=1...,L ues ofk andL the number of structural variants becomes im-
m=1 practically large, e.g. for three frequencies and three gain

When designing a multiple-model adaptive scheme, one i€VelS the total number of algorithms (each made up of three
interested in selecting the adaptation gains of competing arr_ubalgonthms) that should be run in parallel is 27.
gorithms so as to increase robustness of the parallel structurg@Corporating the estimatgg(t), ..., ¥i(t) one can estimate

i.e. decrease its sensitivity to unknown and/or time-varying’rediction errorsAfﬁr each of thie frequency components
degree of nostationarity of the identified signal. Using simi-'/(t) = gi(t) —el®@ Ot — 1), 1=1,... L, i=1,... k

lar arguments as those presented in [5, Ch. 8], one can shdvence, when the technique described above is used, there is
that in order to maximize robustness of the parallel schemenly a need to rumne algorithm consisting okL subalgo-

the gainsu¥, ..., ull should form a geometric progression, rithms.

clt)

ie. it =opll i=1... L—1whered > 1is a constant _
multiplier. 3.2 Proposed algorithm

) Denote by§ (t), @ (t + 1) the estimates yielded by thiti sub-
2.4 Combined approach algorithm of the multiple-frequency sequential optimization

Parallel optimization based on (8) or (9) is not restricted taalgorithm. Denote b§ ™ (), @ (t+1) and§" (t),&" (t + 1)
banks of fixed-gain filters. This allows one to combine in athe estimates yielded by the corresponding side filters - the
judicious way parallel optimization with sequential optimiza- slow one and the fast one, respectively. Finally, denote by

tion. As an example, consider a parallel schneme made up 6&f(t), w (t 4 1) the weighted estimates sft), w (t + 1), ob-

~_

three GANF algorithms: the “center”, self-optimizing filter tained by means of averagigg (t),@ (t+ 1), §(t), @ (t +
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1) and§' (t),@" (t+ 1) in the way described in Section 2.3.
Note, that the predicted value sft), based on information
available at instartt— 1, can be obtained from

§(t|t—1) =el@Ugt—1) (11)
Combining (11) with (10) and using the technique described

in the preceding subsection one arrives at the following
multiple-frequency combined algorithm

output filter:

e ni(t)
o= N ®)+m)+n'©)
Cii(o nii(t)

B ROR ORI
wt+l)=c O t+1)+c)@(t+1)
+e' (@ (t+1)

center filter:

k

i) =yt)— 5 *Ug 1)
i

&(t) = V(t) _e@<t>§(t -1
Gi(t) = 0[St — 1) + it - 1)]
Gi(t) = l() [1-mi(t—1)]4(t)

a .
p.(t)—lm{g(t_ 7 (GO +ig X

CHOwit-1)
-1 ]}

N Re[si (t)zi*(t)]rmax
)

12)

(13)

s(t)=c (V5 (O +c®sH)+¢ (O (1) (14
i=1,...k

k
= 3 S0

4. COMPUTER SIMULATIONS

In the first simulation experiment the analyzed signal was
governed by

y(t) =

where the amplituda was set to 1 and the frequenayt)
evolved according to the random walk model.

The evaluation of different gain scheduling rules was started
at the instant = 1001, after all compared algorithms have
reached their steady state. Since the adopted noise vari-
anceso? and g2 were time-varying: g2(t) = {1 for t ¢
[1,7000;0.2 for t € [7001,10000}, o2(t) = {107 > fort €
[1,4000;107° for t € [4001,1000Q}, the entire analysis
interval T = [1001,1000Q, covering 9000 samples, was
divided into three subintervald; = [10014000, T, =
[4001 7000 and T3 = [7001 10000, corresponding to three
different tracking conditions. The steady state optimal val-
ues ofu, computed according to (4), werg(t) = 0.0067

fort € Ty, Ho(t) = 0.0038for t € T, and Ly(t) = 0.0056for
teTs.

Five algorithms were compared: the optimally tuned ANF
filter (5), two variants of the parallel optimization algo-
rithm (7), (9) (“tuned”: L = 3, u! = 0.03, u@ = 0.045

ul¥ =0.067, and “detuned”L = 3, u¥ = 0.02, ul@ = 0.03,

ul¥ = 0.045), the sequential optimization algorithm (6) &

0.99, Umax= 0.2), and the algorithm based on the combined
approach { = 0.99, pmax= 0.2, 6 = 1.5). The length of

the local analysis interval was setltb = 30. Observe that

for the tuned parallel optimization algorithm it holds that
Uo(t) € [ult, ul¥], vt € T; the detuned algorithm does not
have this property.

Figure 1 shows tracking results yielded by the sequential al-
gorithm - note that the proposed scheme is doing a pretty
good job in optimizing the adaptation ggin

According to Table 1, the tuned parallel optimization ap-
proach yields better results than the sequential approach.
However, the above conclusion does not remain true if the
filter gains are chosen less carefully - see results obtained for
the detuned algorithm in intervalg andTs. Therefore, from

the robustness point of view, the combined scheme seems
to be the most advisable one: while only slightly inferior to
the carefully designed parallel scheme, it is self-dependent in
choosing the right range qf’s, i.e. it does not require any
prior knowledge of the degree of signal nonstationarity.

(15)

t
w(T

st) +v(t) =ae 27 Lv(n)
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Figure 1: Tracking results for a single cisoid obtained using 0 . . . .

the sequential algorithm. The upper plot shows evolution of 2000 4000 6000 8000 10000

the true frequency (solid line) and its estimate (dotted line). time

The lower plot shows the optimal valyg(t) and the en-

semble average of its estimatgét), corresponding td00  Figure 2: Typical tracking results for a multifrequency sig-

different realizations of measurement noise. nal obtained using the combined algorithm. The upper plot
shows the real part of the true signal (solid line) and its
estimate (dotted line). The lower plot shows evolution of

Table 1: Comparison of the mean-squared values of signghe trye frequenciesa (t),i = 1,...,3 and their estimates
estimation errords(t) = §(t) — s(t) for different algorithms (SNR=12dB).

(evaluated from the results of 100 simulation runs).

u Ty T, T3 rescaled versions of the gain of the center filter. The com-
optimal 0.063 ] 0.037 | 0.011 bined approach can be easily extended to multifrequency sig-
parallel optimization (tuned)| 0.064 | 0.038 | 0.011 nals. The resulting algorithm has moderate computational re-
parallel optimization (detuned) 0.083 | 0.037 | 0.013|  quirements and superb tracking properties, confirmed by the
sequential optimization | 0.068 | 0.043 | 0.012 simulation evidence.
combined approach 0.063 | 0.039 | 0.012
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