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ABSTRACT

The paper provides comparison of three different approaches
to on-line tuning of adaptive notch filters (ANF) – the algo-
rithms used for extraction/elimination of complex sinusoidal
signals (cisoids) buried in noise. Tuning is needed to ad-
just adaptation gains, which control tracking performance of
ANF algorithms, to the unknown and/or time time-varying
rate of signal nonstationarity. The first of the compared ap-
proaches incorporates sequential optimization of adaptation
gains. The second solution is based on the concept of paral-
lel estimation. It is shown that the best results are achieved
when both approaches are combined in a judicious way. Such
joint sequential/parallel optimization preserves advantages of
both treatments: adaptiveness (sequential approach) and ro-
bustness to abrupt changes (parallel approach).

1. INTRODUCTION

Consider the problem of extraction or elimination of complex
multifrequency signals buried in noise

y(t) =
k

∑
i=1

si(t)+v(t), si(t) = ai(t)e
j

t
∑

τ=1
ωi(τ)

(1)

wheret = 1,2, . . . denotes the normalized discrete time,y(t)
denotes the measured (noisy) signal andv(t) is a complex
white noise of varianceσ2

v . We will assume thatE[v2
R(t)] =

E[v2
I (t)] = σ2

v /2, E[vR(t)vI (τ)] = 0, ∀ t,τ, wherevR(t) =
Re[v(t)], vI (t) = Im[v(t)]. Since both the complex ampli-
tudesai(t) and the angular frequenciesωi(t) in (1) are as-
sumed to vary slowly with time, the extracted/cancelled sig-
nal s(t) = ∑k

i=1si(t) changes in a periodic-like, but not ex-
actly periodic manner.

From several available adaptive notch filtering algorithms
presented in [1], [2] and [3] we will pick a relatively new
solution described and analyzed in [3]. This is by no means
a critical choice asall algorithms referred to above have ap-
proximately the same local tracking properties. In particular,
they all achieve the posterior Cramér-Rao frequency tracking
bound for random walk frequency changes (under Gaussian
assumptions) - see [2], [6] for more details.

In the single frequency case (k = 1) the normalized, steady
state version of the ANF algorithm presented in [3] can be

written down in the form

ε(t) = y(t)−ejω̂(t)ŝ(t−1)

ŝ(t) = ejω̂(t)ŝ(t−1)+ µε(t)

g(t) = Im

[
ε∗(t)ejω̂(t)

ŝ∗(t−1)

]

ω̂(t +1) = ω̂(t)− γg(t) (2)

Tracking properties of this algorithm are determined by two
user-dependent tuning coefficients: the adaptation gainµ,
0 < µ ¿ 1, which controls the rate of amplitude adaptation,
and another adaptation gainγ, 0 < γ ¿ 1, which decides
upon the rate of frequency adaptation.

The multiple frequency algorithm can be obtained by com-
biningk single-frequency ANFs, given by (2), into an appro-
priately designed parallel structure - see Section 3.

Selection of adaptation gainsµ andγ in (2) is an important
practical problem. By increasing these gains one increases
the tracking speed of an ANF algorithm, but decreases its
noise rejection capability. Decreasing adaptation gains has
opposite consequences. The optimal choice ofµ andγ, i.e.
the choice that minimizes the mean-squared tracking errors,
is therefore always a compromise between the filter’s speed
and it’s accuracy. The outcome depends on the rate of nonsta-
tionarity of the identified signal. Quite obviously, if the rate
of signal nonstationarity is also time-dependent, for example
if periods of fast amplitude/frequency changes are followed
by the periods of their slow variation andvice versa, it may
be very difficult, if at all possible, to find fixed values ofµ
and γ that would guarantee satisfactory performance of an
adaptive notch filter under such heterogenous conditions.

A typical way of increasing tracking capabilities of adap-
tive filters is by means of automatic gain tuning – see [4]
for an interesting overview of different approaches to this
problem. Generally speaking such on-line gain optimization
can be performed using either sequential or parallel estima-
tion techniques. The first case uses a single tracking algo-
rithm equipped with adjustable adaptation gains. The sec-
ond case takes several algorithms with different gain settings,
runs them in parallel and compares them according to their
predictive abilities. We will show that the best results can be
obtained if both approaches mentioned above are appropri-
ately combined.
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2. AUTOMATIC TUNING OF AN ANF
ALGORITHM

2.1 Pre-optimization

Denote by∆s(t) = ŝ(t)− s(t) the signal estimation error
and suppose that the estimated signal is governed bys(t) =
ejω(t)s(t − 1), which means that variation of the instanta-
neous frequencyω(t) is the only source of signal nonsta-
tionarity. Furthermore, assume thatω(t) evolves according
to the random walk (RW) model

ω(t) = ω(t−1)+w(t)

where{w(t)} is a white noise sequence of varianceσ2
w, in-

dependent of{v(t)}.
Using the approximating linear filtering (ALF) technique,
proposed by Tichavsḱy and Ḧandel [1] the following vari-
ance expression was derived in [3] for the case described
above

E[|∆s(t)|2]∼=
[

γ
4µ

+
µ
2

]
σ2

v +
b2

2µγ
σ2

w (3)

whereb2 = |s(t)|2.
Denote byµo andγo the values ofµ andγ that minimize (3).
It is easy to check that

µo = 4
√

2ξ , γo =
√

2ξ (4)

where the scalar coefficientξ = b2σ2
w/σ2

v – the product of
the signal-to-noise ratiob2/σ2

v and the variance of frequency
changesσ2

w – can be regarded a measure of signal nonsta-
tionarity.
According to (4), the optimal value ofγ is equal to the square
of the optimal value ofµ: γo = µ2

o . This suggests that setting
γ = µ2 may be a good way of reducing the number of design
degrees of freedom of an ANF algorithm from two (µ,γ) to
one (µ). The resulting pre-optimized version of (2) can be
written down in the form

ε(t) = y(t)−ejω̂(t)ŝ(t−1)

ŝ(t) = ejω̂(t)ŝ(t−1)+ µε(t)

g(t) = Im

[
ε∗(t)ejω̂(t)

ŝ∗(t−1)

]

ω̂(t +1) = ω̂(t)−µ2g(t) (5)

2.2 Sequential optimization

The adaptation gainµ can be adjusted recursively, by mini-
mizing the following local measure of fit, made up of expo-
nentially weighted prediction errors

V(t,µ) =
1
2

t

∑
τ=1

λ t−τ |ε(τ,µ)|2

The forgetting constantλ (0 < λ < 1), which decides upon
the effective averaging range, should be chosen so that1−
λ ¿ µ, ∀t.
To evaluate the estimatêµ(t) = argminµ V(t,µ) we will use
the standard recursive prediction error (RPE) approach. Ac-
cording to S̈oderstr̈om and Stoica [7], the RPE algorithm can

be expressed in the form

µ̂(t) = µ̂(t−1)− [
V ′′(t, µ̂(t−1))

]−1
V ′(t, µ̂(t−1))

where

V ′(t, µ̂(t−1))∼= Re

[
ε(t, µ̂(t−1))

∂ε∗(t, µ̂(t−1))
∂ µ

]

V ′′(t, µ̂(t−1))∼= λV ′′(t−1, µ̂(t−2))+
∣∣∣∣
∂ε(t, µ̂(t−1))

∂ µ

∣∣∣∣
2

and all derivatives are taken with respect toµ. Denote

ζ (t) =
∂ε(t, µ̂(t−1))

∂ µ
, ψ(t) =

∂ ŝ(t, µ̂(t−1))
∂ µ

ρ(t) =
∂g(t, µ̂(t−1))

∂ µ
, χ(t) =

∂ω̂(t, µ̂(t−1))
∂ µ

r(t) = V ′′(t, µ̂(t−1))

Straightforward calculations lead to

ε(t) = y(t)−ejω̂(t)ŝ(t−1)

ζ (t) =−ejω̂(t)[ jχ(t)ŝ(t−1)+ψ(t−1)]
ψ(t) = ε(t)− [1− µ̂(t−1)]ζ (t)

ρ(t) = Im

{
ejω̂(t)

ŝ∗(t−1)
[ ζ ∗(t)+ jε∗(t)χ(t)

− ε∗(t)ψ(t−1)
ŝ∗(t−1)

]
}

r(t) = λ r(t−1)+ |ζ (t)|2

µ̂(t) =
[

µ̂(t−1)− Re[ε(t)ζ ∗(t)]
r(t)

]µmax

0

ŝ(t) = ejω̂(t)ŝ(t−1)+ µ̂(t)ε(t)

g(t) = Im

[
ε∗(t)ejω̂(t)

ŝ∗(t−1)

]

ω̂(t +1) = ω̂(t)− µ̂2(t)g(t)
χ(t +1) = χ(t)− µ̂(t)[2g(t)+ µ̂(t)ρ(t)] (6)

where

[x]ba =

{
a if x < a
x if a≤ x≤ b
b if x > b

Note that the algorithm was equipped with a “safety valve”:
when the calculated value ofµ exceeds its upper limit, it is
truncated toµmax; similarly, µ is set to zero whenever the
calculated value becomes negative.

2.3 Parallel optimization

The main idea behind the parallel optimization (or multiple-
model) approach is to run simultaneously several adaptive
filters, with fixed (different) adaptation gains, and choose at
each time instant the most appropriate filter, namely the one
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that has shown the best performance in the “recent past”. Fol-
lowing this line of thinking, considerL ANF algorithms of
the form

ε [l ](t) = y(t)−ejω̂ [l ](t)ŝ [l ](t−1)

ŝ [l ](t) = ejω̂ [l ](t)ŝ [l ](t−1)+ µ [l ]ε [l ](t)

g[l ](t) = Im

[
(ε [l ](t))∗ejω̂ [l ](t)

(ŝ [l ](t−1))∗

]

ω̂ [l ](t +1) = ω̂ [l ](t)− (µ [l ])2g[l ](t) (7)

l = 1, . . . ,L

each set to a different value ofµ .
A simple way of combining the estimates yielded by the
competing algorithms is to set

ŝ(t) = ŝ [l̂(t)](t) (8)

where

l̂(t) = arg min
1≤l≤L

M

∑
m=1

|ε [l ](t−m)|2

andM is the length of the local analysis interval.
The switching rule (8) makes its choice on the basis of com-
paring predictive abilities of different filters, but it does not
take into account the distribution of the accumulated predic-
tion error over the set of competitive algorithms. To fur-
ther improve results one can replace (8) with the following
weighted estimation formula

s̄(t) =
L

∑
l=1

c[l ](t)ŝ [l ](t) (9)

where the weighting coefficientsc[l ](t), l = 1, . . . ,L (called
credibility coefficients in [5]) obey

c[l ](t) =
η [l ](t)

∑L
l=1 η [l ](t)

η [l ](t) =

[
M

∑
m=1

|ε [l ](t−m)|2
]−M/2

, l = 1, . . . ,L

When designing a multiple-model adaptive scheme, one is
interested in selecting the adaptation gains of competing al-
gorithms so as to increase robustness of the parallel structure,
i.e. decrease its sensitivity to unknown and/or time-varying
degree of nostationarity of the identified signal. Using simi-
lar arguments as those presented in [5, Ch. 8], one can show
that in order to maximize robustness of the parallel scheme
the gainsµ [1], . . . ,µ [L] should form a geometric progression,
i.e. µ [i+1] = δ µ [i], i = 1, . . . ,L−1 whereδ > 1 is a constant
multiplier.

2.4 Combined approach

Parallel optimization based on (8) or (9) is not restricted to
banks of fixed-gain filters. This allows one to combine in a
judicious way parallel optimization with sequential optimiza-
tion. As an example, consider a parallel scheme made up of
three GANF algorithms: the “center”, self-optimizing filter

(6), which works out the estimatêµ(t), and two “side” fil-
ters – a “slow” filter, with the gain̂µ(t)/δ , and a “fast” one,
with the gainµ̂(t)δ , whereδ > 1 is the appropriately chosen
multiplier. Note that the gains of the side filters are simply
the rescaled versions of the gain of the center filter, i.e. side
filters do not estimateµ on their own. Experimental results
show clearly that such joint sequential/parallel optimization
preserves advantages of both treatments: adaptiveness (se-
quential approach) and robustness (parallel approach).

3. ALGORITHM FOR MULTIPLE FREQUENCIES

3.1 Estimation of signal components

Let
yi(t) = si(t)+v(t), i = 1, . . . ,k

If the signal components defined above were known, the
multiple-frequency sequential optimization algorithm could
have been designed in a decoupled form as a collec-
tion of single-frequency filters of the form (6), driven by
y1(t), . . . ,yk(t), respectively. When such knowledge is not
available, which is a typical situation in practice, one can re-
place the outputsy1(t), . . . ,yk(t) with the following estimates

ŷi(t) = y(t)−
k

∑
n=1
n6=i

ŝn(t|t−1) (10)

whereŝn(t|t−1) denotes the predicted value ofsn(t), based
on information available at instantt−1.
When designing multiple-frequency parallel optimization
schemes, the estimation technique described above results
in huge computational savings. Actually, suppose that the
signal hask frequency components, and that for each com-
ponenti one considersL different levels of the adaptation

gain: µ [1]
i , . . . ,µ [L]

i . To realize a multiple-frequency paral-
lel optimization scheme, analogous to (7), one should run
in parallel and compareLk different algorithms, each con-
sisting of k subalgorithms. The competing filters corre-
spond to different combinations of adaptation gains, namely:

{µ [1]
1 ,µ [1]

2 , . . . ,µ [1]
k }, {µ [2]

1 ,µ [1]
2 , . . . ,µ [1]

k }, . . . , {µ [L]
1 ,µ [1]

2 , . . . ,

µ [1]
k }, . . . , {µ [L]

1 ,µ [L]
2 , . . . ,µ [L]

k }. Even for relatively small val-
ues ofk andL the number of structural variants becomes im-
practically large, e.g. for three frequencies and three gain
levels the total number of algorithms (each made up of three
subalgorithms) that should be run in parallel is 27.
Incorporating the estimateŝy1(t), . . . , ŷk(t) one can estimate
prediction errors for each of thek frequency components

ε [l ]
i (t) = ŷi(t)− ejω̂ [l ]

i (t)ŝ [l ]
i (t − 1), l = 1, . . . ,L, i = 1, . . . ,k.

Hence, when the technique described above is used, there is
only a need to runonealgorithm consisting ofkL subalgo-
rithms.

3.2 Proposed algorithm

Denote bŷsi(t), ω̂i(t +1) the estimates yielded by theith sub-
algorithm of the multiple-frequency sequential optimization
algorithm. Denote bŷs−i (t), ω̂−

i (t +1) andŝ+
i (t), ω̂+

i (t +1)
the estimates yielded by the corresponding side filters - the
slow one and the fast one, respectively. Finally, denote by
s̄i(t), ω̄i(t +1) the weighted estimates ofsi(t),ωi(t +1), ob-
tained by means of averaginĝs−i (t), ω̂−

i (t + 1), ŝi(t), ω̂i(t +
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1) andŝ+
i (t), ω̂+

i (t +1) in the way described in Section 2.3.
Note, that the predicted value ofsi(t), based on information
available at instantt−1, can be obtained from

ŝi(t|t−1) = ejω̄i(t)s̄i(t−1) (11)

Combining (11) with (10) and using the technique described
in the preceding subsection one arrives at the following
multiple-frequency combined algorithm

center filter:

ŷi(t) = y(t)−
k

∑
n=1
n6=i

ejω̄n(t)s̄n(t−1)

εi(t) = ŷi(t)−ejω̂i(t)ŝi(t−1)

ζi(t) =−ejω̂i(t)[ jχi(t)ŝi(t−1)+ψi(t−1)]
ψi(t) = εi(t)− [1− µ̂i(t−1)]ζi(t)

ρi(t) = Im

{
ejω̂i(t)

ŝ∗i (t−1)
[ ζ ∗i (t)+ jε∗i (t)χi(t)

− ε∗i (t)ψi(t−1)
ŝ∗i (t−1)

]
}

r i(t) = λir i(t−1)+ |ζi(t)|2

µ̂i(t) =
[

µ̂i(t−1)− Re[εi(t)ζ ∗i (t)]
r i(t)

]µmax

0

ŝi(t) = ejω̂i(t)ŝi(t−1)+ µ̂i(t)εi(t)

gi(t) = Im

[
ε∗i (t)ejω̂i(t)

ŝ∗i (t−1)

]

ω̂i(t +1) = ω̂i(t)− µ̂2
i (t)gi(t)

χi(t +1) = χi(t)− µ̂i(t)[2gi(t)+ µ̂i(t)ρi(t)]

ηi(t) =

[
M−1

∑
m=0

|εi(t−m)|2
]−M/2

(12)

i = 1, . . . ,k

side filters:

µ̂+
i (t) = µ̂i(t)δ

µ̂−i (t) = µ̂i(t)/δ

ε±i (t) = ŷi(t)−ejω̂±i (t)ŝ±i (t−1)

ŝ±i (t) = ejω̂±i (t)ŝ±i (t−1)+ µ̂±i (t)ε±i (t)

g±i (t) = Im

[
(ε±i (t))∗ejω̂±i (t)

(ŝ±i (t−1))∗

]

ω̂±
i (t +1) = ω̂±

i (t)− (µ̂±i (t))2g±i (t)

η±i (t) =

[
M−1

∑
m=0

|ε±i (t−m)|2
]−M/2

(13)

i = 1, . . . ,k

output filter:

ci(t) =
ηi(t)

η−i (t)+ηi(t)+η+
i (t)

c±i (t) =
η±i (t)

η−i (t)+ηi(t)+η+
i (t)

ω̄i(t +1) = c−i (t)ω̂−
i (t +1)+ci(t)ω̂i(t +1)

+c+
i (t)ω̂+

i (t +1)

s̄i(t) = c−i (t)ŝ−i (t)+ci(t)ŝi(t)+c+
i (t)ŝ+

i (t) (14)

i = 1, . . . ,k

s̄(t) =
k

∑
i=1

s̄i(t) (15)

4. COMPUTER SIMULATIONS

In the first simulation experiment the analyzed signal was
governed by

y(t) = s(t)+v(t) = ae
j

t
∑

τ=1
ω(τ)

+v(t)

where the amplitudea was set to 1 and the frequencyω(t)
evolved according to the random walk model.
The evaluation of different gain scheduling rules was started
at the instantt = 1001, after all compared algorithms have
reached their steady state. Since the adopted noise vari-
ancesσ2

v and σ2
w were time-varying: σ2

v (t) = {1 for t ∈
[1,7000];0.2 for t ∈ [7001,10000]}, σ2

w(t) = {10−5 for t ∈
[1,4000];10−6 for t ∈ [4001,10000]}, the entire analysis
interval T = [1001,10000], covering 9000 samples, was
divided into three subintervalsT1 = [1001,4000], T2 =
[4001,7000] andT3 = [7001,10000], corresponding to three
different tracking conditions. The steady state optimal val-
ues ofµ , computed according to (4), were:µo(t) = 0.0067
for t ∈ T1, µo(t) = 0.0038for t ∈ T2 andµo(t) = 0.0056for
t ∈ T3.
Five algorithms were compared: the optimally tuned ANF
filter (5), two variants of the parallel optimization algo-
rithm (7), (9) (“tuned”: L = 3, µ [1] = 0.03, µ [2] = 0.045,
µ [3] = 0.067, and “detuned”:L = 3, µ [1] = 0.02, µ [2] = 0.03,
µ [3] = 0.045), the sequential optimization algorithm (6) (λ =
0.99, µmax= 0.2), and the algorithm based on the combined
approach (λ = 0.99, µmax = 0.2, δ = 1.5). The length of
the local analysis interval was set toM = 30. Observe that
for the tuned parallel optimization algorithm it holds that
µo(t) ∈ [µ [1],µ [3]], ∀t ∈ T; the detuned algorithm does not
have this property.
Figure 1 shows tracking results yielded by the sequential al-
gorithm - note that the proposed scheme is doing a pretty
good job in optimizing the adaptation gainµ.
According to Table 1, the tuned parallel optimization ap-
proach yields better results than the sequential approach.
However, the above conclusion does not remain true if the
filter gains are chosen less carefully - see results obtained for
the detuned algorithm in intervalsT1 andT3. Therefore, from
the robustness point of view, the combined scheme seems
to be the most advisable one: while only slightly inferior to
the carefully designed parallel scheme, it is self-dependent in
choosing the right range ofµ ’s, i.e. it does not require any
prior knowledge of the degree of signal nonstationarity.
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Figure 1: Tracking results for a single cisoid obtained using
the sequential algorithm. The upper plot shows evolution of
the true frequency (solid line) and its estimate (dotted line).
The lower plot shows the optimal valueµo(t) and the en-
semble average of its estimatesµ̂(t), corresponding to100
different realizations of measurement noise.

Table 1: Comparison of the mean-squared values of signal
estimation errors∆s(t) = ŝ(t)−s(t) for different algorithms
(evaluated from the results of 100 simulation runs).

µ T1 T2 T3
optimal 0.063 0.037 0.011

parallel optimization (tuned) 0.064 0.038 0.011
parallel optimization (detuned) 0.083 0.037 0.013

sequential optimization 0.068 0.043 0.012
combined approach 0.063 0.039 0.012

Figure 2 shows results of application of the combined se-
quential/parallel optimization algorithm (12)–(15) (withM =
30, δ = 1.5 andλ1 = λ2 = λ3 = 0.99) to estimation of a non-
stationary multifrequency signal buried in white measure-
ment noise

y(t) = s(t)+v(t)

s(t) = 1.5e
j

t
∑

τ=1
ω1(τ)− je

j
t
∑

τ=1
ω2(τ)

+2e
j

t
∑

τ=1
ω3(τ)

Again, the results are satisfactory, both in terms of frequency
tracking and signal tracking.

5. CONCLUSION

On-line optimization of tracking performance of adaptive
notch filters (ANF) can be done either sequentially or by
means of parallel estimation. We have shown that the best re-
sults are obtained if both approaches are appropriately com-
bined. For a single cisoid the combined sequential/parallel
algorithm is made up of three ANF filters: the center filter,
which performs sequential gain optimization, and two side
filters (“slow” and “fast”) with adaptation gains that are the

4000 4050 4100 4150 4200

−4

−2

0

2

4

R
e[

s(
t)

]
2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

ω
(t

)
time

Figure 2: Typical tracking results for a multifrequency sig-
nal obtained using the combined algorithm. The upper plot
shows the real part of the true signal (solid line) and its
estimate (dotted line). The lower plot shows evolution of
the true frequenciesωi(t), i = 1, . . . ,3 and their estimates
(SNR=12dB).

rescaled versions of the gain of the center filter. The com-
bined approach can be easily extended to multifrequency sig-
nals. The resulting algorithm has moderate computational re-
quirements and superb tracking properties, confirmed by the
simulation evidence.
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[6] M. Niedźwiecki and P. Kaczmarek, “Tracking analysis
of a generalized adaptive notch filter,”IEEE Trans. on
Signal Processing, vol. 54, pp. 304–314, 2006.

[7] T. Söderstr̈om and P. Stoica,System Identification, Pren-
tice Hall, 1988.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


