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ABSTRACT When the sequence of regression vectpggt)} is wide-
Generalized adaptive notch filters are used for identificasense stationary and persistently exciting, with known co-
tion/tracking of quasi-periodically varying dynamic systemsvariance matrix® = E[¢*(t)¢' (t)] > 0, the normalized
and can be considered an extension, to the system case,sp¢ady state single-frequendy=€ 1) version of the GANF
classical adaptive notch filters. Belonging to the class oflgorithm presented in [2], [3] can be written down in the
causal adaptive filters, the generalized adaptive notch filteform
ing algorithms vyield biased frequency estimates. We show

that this bias can be removed, or at least substantially re- et) = yt)-eUpT(t)B(t—1)
duced. The only price paid for the resulting improvement of 3(t) = e®Vgi_1 & Lo (et
the filter's tracking performance is in terms of a decision de- A Al ,A) +H :’0 et)
lay, which must be incorporated in the adaptive loop. Since 0 = | g (1)e VT (1)B(t—1)
decision delay is acceptable in many practical applications, gty = Im BH(t _ 1)@3(»[ —1)
the proposed bias/delay trade-off is an attractive alternative R R
to the classical bias/variance compromise. wt+1) = wt)—yyt)
o) = B (4)

1. INTRODUCTION

The term “generalized adaptive notch filter” (GANF) was
coined in [1] and denotes adaptive filtering algorithm capabl
of identification/tracking of quasi-periodically varying sys-
tems. Complex-valued quasi-periodically varying system
are governed by

Tracking properties of this algorithm are determined by two
%ser—dependent tuning coefficients: the adaptation gain
< U < 1, which controls the rate of amplitude adaptation,
énd another adaptation gajn 0 < y < 1, which decides
upon the rate of frequency adaptation.
The multiple frequency GANF algorithm can be obtained
n in a pretty straightforward way by combinink single-
yt) =5 8O +vt) = ®O1) +Vv(t) (1)  frequency identification blocks (subalgorithms), given by
=1 (4), into appropriately designed parallel or cascade structures
wheret = 1,2,... denotes the normalized discrete tirget) - See [1] and Section 3.3. _ _
denotes the system outpys(t) = [¢1(t),...,dn(t)]T is the Generalized adaptive notch filters can be applied to equaliza-
regression vector angt) is a complex white noise of vari- tion of far?'?'y fad'”ﬁ telecomn&umcaﬂon char?nels ([214][ [5]-
ancec?. We will assume thaENZ(t)] = ENA(t)] = 02/2, M @special case where=1andg(t) = 1,t, the model (1)
EVr(t)Vi(S)] = 0, V t,5 wherevg(t) = ReV(t)], vi(t) = - (2) becom_es a description of a noisy nonstationary multi-
Im[v(t)]. Finally, 6(t) = [61(t) 6(t)]T denotes the vec- frequency signa$(t) = 8(t). In this case generalized adap-
tor of time varyi’n co_efficlieni.s. .Izncr)]deled as weighted sumtive notch filters turn into “ordinary” adaptive notch filters
¢ | ying tial ' 9 ?ANFS), the algorithms used for extraction or elimination of
of compiex exponentials sinusoidal signals buried in noise - see [6], [7] and the refer-

9 ences therein.

K ] % o (
9|(t)zzlc’:ln('t)65:l ., I=1....n )
i= 2. TRACKING PROPERTIES OF THE GANF

. . ALGORITHM
Since both the complex amplitudag(t) and the angular fre-
quenciesw (1) in (2) are assumed to vary slowly with time, Consider a quasi-periodically varying system with a single
the system described by (1) - (2) changes in a periodic-likefrequency modek(= 1), governed by
but not exactly periodic manner. ,
Denote bya(t) = [ai(t),...,ani(t)]T the vector of system B(t) =e“Vgt—1) (5)
coefficients associated with a particular frequeagyand let o
Bi(t) = fi(t)ai(t), wherefi(t) = & sLia(s) Using the short- Note that the assumed model of parameter variation can be

. . .. it
hand notation introduced above, system equation (1) can Written in an explicit form a#(t) = 3(t) :ZﬁoeJ Zﬁ&;@),
rewritten in the form where8, = 3(0). Since it holds thaf|3(t)||* = ||Bo||* =
K const vt, parameter changes of the analyzed system can be
_ Tiya attributed exclusively to changes of the instantaneous fre-
Y = 5 @T OB+ v() @ Sleneyolt
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Let By taking expectations of both sides of (6) one arrives at
b* = g1 (t)@B(t) = B ®Bo ~ U
and E[AW(t)] = — = dw 9
Y
i [BR e V() : : o .
z(t) =1Im b2 which shows that the frequency estimates are in this case bi-
ased. This is a typical situation. The bias is caused by the
It can be shown thafz(t)} is a real-valued white noise with fact that parameter estimates yielded by causal adaptive fil-
variance ters always lag behind the true signal/system parameters [9].
o2 — if 1 A typical way of increasing tracking capabilities of adap-
Z 7 2p2 T 2SNR tive notch filters is by means of automatic gain/bandwidth

tuning — in the signal case an interesting overview of differ-
ent approaches to this problem can be found in [10]. Irre-

The frequency tracking properties of (4) were analyzed i pective of tuning principles, all solutions mentioned above
[2], [3] using the direct averaging approach [8] and the ap-.a\’e the same main feature - they try to balance the estima-
proximating linear filtering technique proposed in [6]. Ap- tion bias and the estimation variance. In order to achieve
proximating linear filters characterize the relation betweeriS: they increase adaptation gains when signal parameters
the sequences of estimation errors and the sequences of mggange faster, and decrease adaptation gains when signal pa-
surement noise(t) and of the one-step changes of the tryefameters slow down. From the qualitative viewpoint the ap-

; ; _proach advocated in this paper is quite different. We will
;rtiqil;l]eg ﬁgéﬂbg:ﬁggddegft&i}i: Z%&ﬂslr)iﬁ;ds?ggnthms oper show that the frequency bias can be removed, or at least sig-

As shown in [2], [3] the frequency estimation errors yieldedniﬁca.ntly reduced, if the estimation delay introduced by the
by the generalized adaptive notch filtering algorithm (4), ap&90rithm (4) is compensated. Since the bias can be elimi-
plied to the system obeying (5), can be approximately derjated without increasing the estimation variance, the result-
scribed by the following linear eq’uation ing algorithm shows considerably improved tracking perfor-

Finally, denote byAd@(t) = @(t) — w(t) the frequency esti-
mation error and letv(t) = w(t) — w(t —1).

mance.
AD(t) = El(qfl)z(t) =+ Ez(qfl)w(t) (6) Note that the ALF equation (6) can be rewritten in the form
~ —1 -1
whereq ! denotes the backward shift operator, a(t) = Fi(q )z(t) + F(q ) w(t) (10)
_ 11 whereF{(q1) = E1(g~1) and
El(qfl) — (1 5)(1 q )q o
1-(A+0)g1+Aqg2 Fz(q_l) _ (1-9)q (11)
1 1-Aq?t 1-(A+0)g1+Aq2
Ex(q7) = (1)

C1-(A+0)gT+Aq?

andA =1—pu, & =1—y. The filtersE;(q~1) andEx(q 1) _ R
are asymptotically stable for any and & from the interval wt—1)=w(t) (12)

(0,1). wherel is an integer measure of a delay introduced by the

It was also shown that when the frequenoft) evolves ac- fijter f,(q-1). We will show thatl can be evaluated from
cording to the random walk model the optimally tuned algo-

Denote byw(t) the debiased (approximately) frequency es-
timate. The simplest solution is to set

rithm (4) is (under Gaussian assumptions and in the range | —int u 13

of applicability of the ALF approximation) a statistically ef- =it (13)

ficient estimation procedure, i.e. the corresponding mean- ] .

squared frequency tracking error achieves its lower boun#hereint[x| denotes an integer number closest.to

set by the Crarér-Rao inequality [2], [3]. First, con5|d_er the_ case of linear fre_quer)cy chang_es. Note

that the relationship (8) can be rewritten in an explicit form

3. FREQUENCY DEBIASING asw(t) = wp + At According to (9), it holds that

3.1 Frequency bias analysis E[@(1)] = o+ B (t B L;) —ot—1)

When the instantaneous frequency drifts according to the

random walk model, i.e. whefw(t)} is a white noise se- where

quence, one obtairE[@(t)] = w(t). This follows directly = H (14)
from (6) and means that, in the case considered, the algo- y

rithm (4) yields unbiased frequency estimates (at least up t@hich leads directly to (13).

the higher-order terms, neglected in the course of the ALFThe second argument in favor of (13) comes from the classi-
analysis). cal filtering theory. The time-shifting properties of a lowpass

It is important to realize that unbiasedness haldy/ under & jw) _ jo(w) i
the random walk hypothesis, i.e. this property does not exf-"ter F(e%) = Alw)e can be roughly characterized by

tend to other, perhaps more realistic, models of frequenc&ss nominal (low-frequency) delay tirrie

variation. As an example, consider the situation where the Tnom = lim_Tp(w) = lim 14(w) (15)
instantaneous frequency changes linearly with time (linear w—0 w0
chirp signal), that is 1 w stands here for the standard Fourier-domain frequency variable and

not for the angular frequency of the analyzed signal - the latter quantity is
w(t) =) —wlt—1) =0y, Wt (8)  denoted in this paper k(t).
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where Tp(w) = —@(w)/w denotes the so-called phase de-were available, one could designindependent GANF al-
lay, used as a measure of delay at specific frequencies, agdrithms each of which would take care of a particular sub-
Tg(w) = —d@(w)/dw denotes the group delay, serving as asystem. Sincé(t) = TX ; Gi(t), the final estimation result
measure of delay over a band (group) of frequencies. Notgould be easily obtained by combining the partial estimates
that for the values oo close to zero it holds thainw = w,
cosw =2 1, leading to

o~ k o~
o= 3 A

Fz(ej‘*’) ~ i :Az(w)ej@(‘*” . . _
y+ijiu—-yw Even though the signaig(t) are not available, one can easily
estimate them using the formula
where
k
2 i) =yt)— ¥ Ym(tlt—1
o) — V2w Yit) =y(t) rr;ym(\ )
V+ (K= y)2e? m
P(w) = —w—afCtanL;y w where i (tjt — 1) = el@®T(t)3;(t — 1) denotes the pre-

dicted value ofyi(t), yielded by the estimation algorithm de-
signed to track parameters of tie subsystem. Note that af-

ter replacingyi(t) with ¥i(t) one obtaing; (t) = ... = &(t) =

y(t) =T () TK QUG (t—1) = £(t) i.e. all subalgorithms

are in fact driven by the same “global” prediction eregt).

From the system-analytic point of view, the distributed esti-
The final solution we propose is a cascade of two filtersmation scheme described above is a parallel structure made
the pilof adaptive notch filter (4), which yields preliminary up of k identical (from the functional viewpoint) blocks.
frequency estimateé(t), and the frequency-guided adap- Each block tracks a particular frequency component of the
tive notch filter, fed with the debiased estimates (12), whictparameter vectdd(t).

works out the final signal estimats4). The resulting parallel-form algorithm is summarized below.
Since the proposed debiasing scheme is noncausal, tiAe add some extra design flexibility, we have equipped each
frequency-guided algorithm will in fact operate on a time-subalgorithm with independently assigned adaptation gains
delayed input data sequence. The resulting decision delay pf andy.
k sampling intervals is acceptable in majority of signal pro-

The nominal delay of>(q~1), evaluated according to (15),
is equal tornom = U/ Yy, which is identical with (14).

3.2 Two-step algorithm

cessing applications, such as adaptive line enhancement or pilot filter:
adaptive noise canceling. The proposed two-step algorithm - k iama
can be summarized as follows gt) = yt)-¢ (t)_Ze"“ Bit—1)
pilot filter: .
IR Git) = e9UB(t—1)+ e ot (t)e(t
S(t) — y(t)_ejw(t)ﬁ(t_l) ﬁl( ) ﬁl( _,\) I‘l| Asa ( ) ( )
*(1)ela® LT )3 (1 —
Bt) = ePUB(t—1)+pe(t) gty = Im [EWETe WAC-L)
B o Brt- 126 (- 1)
£*(t)el@t) . .
gt) = Im|= wt+l) = at)—wa(t)
pr(t—1) i— 1.k
Wt+1) = t)—yg(t)
~ k
st) = B() (16) o) = Eiﬁi(t) (18)
1=

frequency-guided filter: ) ,
frequency-guided filter:

et-1) = y(tfllfej‘r’mﬁ(tflfl) St-1) — yit_D)

Bt—1) = et —1—1)+pust—1) Ko _

St-1) = B-1) (17) - Pt —l)i;e‘““"“”ﬁi(t—l -1)
3.3 Extension to the multiple frequencies case Bit—1) = eatHhg 1)
Denote by + wd® et —e(t-1)

Yi(t) = @ (DBi(t) +v(t) i=1,....k
the output of thath subsystem of (3), i.e. subsystem asso- _ kK
ciated with the frequency. If the signalsys(t),...,y«(t) ot—1) = .Z,’@i (t—1) (19)
=

2In this paper the term “pilot filter” has a different meaning than the . .
analogous term in [10]. wherel = max{ly,...,lx} andly =int[pi/vi], i=1,...,k
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Remark 1

When the matrix® is not known, or when it changes with
time, it can be replaced in (18) and (19) with the following ©-75¢

0.8y wl(t) ’ wz(t)

estimate 0.7}
~ ~ « T 0.65r
P(t) = APt —1)+(1-A)p ()¢ (1) o6l
where0 < A, < 1 denotes a forgetting constant (e, = 055
0.9). 0.5
Remark 2 045
Whenk > 1, the ALF analysis carried out above is valid % 1000 2000 3000 4000
as long as the estimated frequencies remain well-separated. t

When frequency tracking is disablegr € 0,(0) = wy),
the first-order parameter tracking properties of (4) are charFigure 1: True system frequency changes (thin lines)
acterized by the relationshig[0(t)] = T(q 1)#(t) where and typical trajectories of frequency estimates (thick lines)
T(q*l) — u/[l_ (1_ u)eJ"-’oq*l} is a narrow-band extrac- y|E|ded by the GANF algorlthm/.(: 0.03, SNR=13 dB)

tion filter centered at the frequenay,, with bandwidth
Bsgs = 2u. Therefore, the frequency separation condition

for (18) can be approximately expressed in the form Figure 2 allow one to compare tracking performance of the

regular algorithm and of its debiased version. To obtain
t) — oo (t , ViVt 20 meaningful quantitative results the comparison was made in
@O = @O > pi+ 1y, VA, (20) " five analysis intervalsT, — [501,1000, T, — [1001 1500,
When the above condition is not fulfilled, the bandwidths of 13 = [1501,2000, T4 = [2001, 2500 andTs = [2501,3000,
the extraction filters partially overlap, making the behavior ofcorresponding to different types of frequency changes. Since
the entire structure difficult to predict. It should be stressedthe frequency trajectories (t) anday(t) intersect at instant
however, that the proposed algorithm works pretty well every = 2750 the frequency separation condition (20) is not ful-
if the frequency separation condition is violated. filled in the intervalTs. _ _
The accumulated frequency tracking errors were defined as
Remark 3 ) )
So far we have been assuming that the adaptation gains in 2w = Zm'n{[ﬁh(t) — (1)) + [Gn(t) — (1)),
(18)-(19) are fixed. In order to optimize tracking perfor- te
mance of an GANF filter one can equip it with an additional Ny 2 1) 2
gain-tuning loop. Such self-optimizing version of the algo- () w-z(t)] +{@(t) — (V)] } .
rithm, capable of automatic tuning of its adaptation gainsand the system tracking errors were evaluated according to
was proposed in [11]. Quite obviously, when the adaptation N ) 2 (A 5
gains are time-varying, the estimation defgig also a time- 29 = Zr |(6(t) —6(t)u(t)|” = o3 Zr 18(t) —6(t)]
deper)d.ent quantity. The value oft) can be depermineq by te te
examining the “response” of the GANF algorithm to linear The same settings were adopted for both subalgorithms:

frequency changes. U1 = Lo, Y= 1 = Y. To reduce the number of design de-
grees of freedom, the frequency adaptation gaivas set to
4. COMPUTER SIMULATIONS u?/2—see [3]. The plots gathered in Figure 2 show how per-

The aim of the simulation experiment was to check the sysformance of the compared algorithms — the original GANF
tem tracking capabilities of the GANF algorithm (18) - (19). &lgorithm (4) and its debiased version (18) - (19) — depends
The simulated system, inspired by channel estimation appl@n the choice of the adaptation gginfor different types of

cations, was governed by frequency changes. The plots depict ensemble averages (cor-
responding to 50 realizations of measurement noise) of the
y(t) = B(t)u(t) + v(t) sums of the squared frequency and signal estimation errors.
In all cases frequency debiasing led to improved tracking re-
where sults.
o(t) = a el Y5 wi(9) + apel Y51 @2(s) The ruggedness of the plots corresponding to the int@eval

o ) ) is caused by the frequency switching effect, which can be
i.e. itwas a single-tap FIR system< 1) with two modes of  gpserved when the separation condition (20) is not fulfilled.
parameter variatiork(= 2). The weighting coefficients had \when passbands of two (G)ANF filters overlap, the corre-
constant valuesy = 2— j anda; = 1+ 2j. The white 4-  sponding estimates, say (t) and@y(t), “switch” at random

QAM sequence was used as the input sigo)(= £1+ ],  moments betweem, (t) andawy(t). This means that in some
02 = 2) and the noise was complex Gaussian with variancéime intervalsc (t) follows wy(t) and éy(t) follows wy(t),
02 = 1(SNR=13 dB). while in some other intervalay (t) follows wy(t) and dy(t)

Figure 1 shows evolution of the instantaneous frequenfollows w;(t). Frequency switching produces jitter which
cies wy(t) and wy(t), and trajectories of the correspond- can be seen at both error plots.

ing frequency estimates obtained from the regular multipleSumming up, frequency debiasing allows one to improve
frequency GANF algorithm (18) fqu = u; = u» = 0.03and  tracking capabilities of GANF algorithms. First, irrespec-
Y= y1 = o = 0.00045 The plots gathered in tive of the choice of design variablesandy, the corrected
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Figure 2: Dependence of the averaged sums of the squareJ

frequency estimation errodg, and system estimation errors
> on the adaptation gaip. Comparison involves the esti-
mates yielded by the original GANF algorithnx) and by
its frequency-debiased version proposed in the paperih

estimates are always more accurate than the original esti-
mates. Second, and perhaps more importantly from the prac-
tical viewpoint, the debiased algorithms are more robust to

the choice of design variables.

5. CONCLUSION

Bias (lag) errors seriously limit tracking capabilities of adap-
tive filters. We have shown that frequency biases, which arise
in generalized adaptive notch filtering (GANF) algorithms,
can be significantly reduced by incorporating in the adap-
tive loop a judiciously chosen decision delay. Such delay
is acceptable in many practical applications. The proposed
solution is a cascade of two filters. The “pilot” generalized
adaptive notch filter provides preliminary (biased) frequency
estimates. The estimates yielded by the pilot algorithm are
fed into the second algorithm - the “frequency-guided” gen-
eralized adaptive notch filter, which operates on a delayed
data sequence. We have shown that frequency debiasing im-
proves tracking performance of GANF algorithms and in-
creases their robustness to the choice of design parameters.
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