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Faculty of Electronics, Telecommunications and Computer Science
Department of Automatic Control, Gdańsk University of Technology
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ABSTRACT
Generalized adaptive notch filters are used for identifica-
tion/tracking of quasi-periodically varying dynamic systems
and can be considered an extension, to the system case, of
classical adaptive notch filters. Belonging to the class of
causal adaptive filters, the generalized adaptive notch filter-
ing algorithms yield biased frequency estimates. We show
that this bias can be removed, or at least substantially re-
duced. The only price paid for the resulting improvement of
the filter’s tracking performance is in terms of a decision de-
lay, which must be incorporated in the adaptive loop. Since
decision delay is acceptable in many practical applications,
the proposed bias/delay trade-off is an attractive alternative
to the classical bias/variance compromise.

1. INTRODUCTION

The term “generalized adaptive notch filter” (GANF) was
coined in [1] and denotes adaptive filtering algorithm capable
of identification/tracking of quasi-periodically varying sys-
tems. Complex-valued quasi-periodically varying systems
are governed by

y(t) =
n

∑
l=1

θl (t)ϕl (t)+v(t) = ϕT(t)θ(t)+v(t) (1)

wheret = 1,2, . . . denotes the normalized discrete time,y(t)
denotes the system output,ϕ(t) = [ϕ1(t), . . . ,ϕn(t)]T is the
regression vector andv(t) is a complex white noise of vari-
anceσ2

v . We will assume thatE[v2
R(t)] = E[v2

I (t)] = σ2
v /2,

E[vR(t)vI (s)] = 0, ∀ t,s, where vR(t) = Re[v(t)], vI (t) =
Im[v(t)]. Finally, θ(t) = [θ1(t), . . . ,θn(t)]T denotes the vec-
tor of time varying coefficients, modeled as weighted sums
of complex exponentials

θl (t) =
k

∑
i=1

ali (t)e
j

t
∑

s=1
ωi(s)

, l = 1, . . . ,n (2)

Since both the complex amplitudesali (t) and the angular fre-
quenciesωi(t) in (2) are assumed to vary slowly with time,
the system described by (1) - (2) changes in a periodic-like,
but not exactly periodic manner.
Denote byαi(t) = [a1i(t), . . . ,ani(t)]T the vector of system
coefficients associated with a particular frequencyωi and let
βi(t) = fi(t)αi(t), wherefi(t) = ej ∑t

s=1 ωi(s). Using the short-
hand notation introduced above, system equation (1) can be
rewritten in the form

y(t) =
k

∑
i=1

ϕT(t)βi(t)+v(t) (3)

When the sequence of regression vectors{ϕ(t)} is wide-
sense stationary and persistently exciting, with known co-
variance matrixΦ = E[ϕ∗(t)ϕT(t)] > 0, the normalized
steady state single-frequency (k = 1) version of the GANF
algorithm presented in [2], [3] can be written down in the
form

ε(t) = y(t)−ejω̂(t)ϕT(t)β̂(t−1)

β̂(t) = ejω̂(t)β̂(t−1)+ µΦ−1ϕ∗(t)ε(t)

g(t) = Im

[
ε∗(t)ejω̂(t)ϕT(t)β̂(t−1)

β̂H(t−1)Φβ̂(t−1)

]

ω̂(t +1) = ω̂(t)− γg(t)

θ̂(t) = β̂(t) (4)

Tracking properties of this algorithm are determined by two
user-dependent tuning coefficients: the adaptation gainµ,
0 < µ ¿ 1, which controls the rate of amplitude adaptation,
and another adaptation gainγ, 0 < γ ¿ 1, which decides
upon the rate of frequency adaptation.
The multiple frequency GANF algorithm can be obtained
in a pretty straightforward way by combiningk single-
frequency identification blocks (subalgorithms), given by
(4), into appropriately designed parallel or cascade structures
- see [1] and Section 3.3.
Generalized adaptive notch filters can be applied to equaliza-
tion of rapidly fading telecommunication channels [4], [5].
In a special case wheren = 1 andϕ(t) = 1,∀t, the model (1)
- (2) becomes a description of a noisy nonstationary multi-
frequency signals(t) = θ(t). In this case generalized adap-
tive notch filters turn into “ordinary” adaptive notch filters
(ANFs), the algorithms used for extraction or elimination of
sinusoidal signals buried in noise - see [6], [7] and the refer-
ences therein.

2. TRACKING PROPERTIES OF THE GANF
ALGORITHM

Consider a quasi-periodically varying system with a single
frequency mode (k = 1), governed by

β(t) = ejω(t)β(t−1) (5)

Note that the assumed model of parameter variation can be
rewritten in an explicit form asθ(t) = β(t) = βoej ∑t

s=1 ω(s),
whereβo = β(0). Since it holds that||β(t)||2 = ||βo||2 =
const, ∀t, parameter changes of the analyzed system can be
attributed exclusively to changes of the instantaneous fre-
quencyω(t).
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Let
b2 = βH(t)Φβ(t) = βH

o Φβo

and

z(t) = Im

[
βH(t)ϕ∗(t)v(t)

b2

]

It can be shown that{z(t)} is a real-valued white noise with
variance

σ2
z =

σ2
v

2b2 =
1

2SNR
Finally, denote by∆ω̂(t) = ω̂(t)−ω(t) the frequency esti-
mation error and letw(t) = ω(t)−ω(t−1).
The frequency tracking properties of (4) were analyzed in
[2], [3] using the direct averaging approach [8] and the ap-
proximating linear filtering technique proposed in [6]. Ap-
proximating linear filters characterize the relation between
the sequences of estimation errors and the sequences of mea-
surement noisev(t) and of the one-step changes of the true
frequencyw(t), provided that the analyzed algorithms oper-
ate in a neighborhood of their equilibrium state.
As shown in [2], [3] the frequency estimation errors yielded
by the generalized adaptive notch filtering algorithm (4), ap-
plied to the system obeying (5), can be approximately de-
scribed by the following linear equation

∆ω̂(t) = E1(q−1)z(t)+E2(q−1)w(t) (6)

whereq−1 denotes the backward shift operator,

E1(q−1) =
(1−δ )(1−q−1)q−1

1− (λ +δ )q−1 +λq−2

E2(q−1) = − 1−λq−1

1− (λ +δ )q−1 +λq−2 (7)

andλ = 1− µ , δ = 1− γ. The filtersE1(q−1) andE2(q−1)
are asymptotically stable for anyλ andδ from the interval
(0,1).
It was also shown that when the frequencyω(t) evolves ac-
cording to the random walk model the optimally tuned algo-
rithm (4) is (under Gaussian assumptions and in the range
of applicability of the ALF approximation) a statistically ef-
ficient estimation procedure, i.e. the corresponding mean-
squared frequency tracking error achieves its lower bound
set by the Craḿer-Rao inequality [2], [3].

3. FREQUENCY DEBIASING

3.1 Frequency bias analysis

When the instantaneous frequency drifts according to the
random walk model, i.e. when{w(t)} is a white noise se-
quence, one obtainsE[ω̂(t)] = ω(t). This follows directly
from (6) and means that, in the case considered, the algo-
rithm (4) yields unbiased frequency estimates (at least up to
the higher-order terms, neglected in the course of the ALF
analysis).
It is important to realize that unbiasedness holdsonly under
the random walk hypothesis, i.e. this property does not ex-
tend to other, perhaps more realistic, models of frequency
variation. As an example, consider the situation where the
instantaneous frequency changes linearly with time (linear
chirp signal), that is

w(t) = ω(t)−ω(t−1) = δω , ∀t (8)

By taking expectations of both sides of (6) one arrives at

E[∆ω̂(t)] =− µ
γ

δω (9)

which shows that the frequency estimates are in this case bi-
ased. This is a typical situation. The bias is caused by the
fact that parameter estimates yielded by causal adaptive fil-
ters always lag behind the true signal/system parameters [9].
A typical way of increasing tracking capabilities of adap-
tive notch filters is by means of automatic gain/bandwidth
tuning – in the signal case an interesting overview of differ-
ent approaches to this problem can be found in [10]. Irre-
spective of tuning principles, all solutions mentioned above
have the same main feature - they try to balance the estima-
tion bias and the estimation variance. In order to achieve
this, they increase adaptation gains when signal parameters
change faster, and decrease adaptation gains when signal pa-
rameters slow down. From the qualitative viewpoint the ap-
proach advocated in this paper is quite different. We will
show that the frequency bias can be removed, or at least sig-
nificantly reduced, if the estimation delay introduced by the
algorithm (4) is compensated. Since the bias can be elimi-
nated without increasing the estimation variance, the result-
ing algorithm shows considerably improved tracking perfor-
mance.
Note that the ALF equation (6) can be rewritten in the form

ω̂(t) = F1(q−1)z(t)+F2(q−1)ω(t) (10)

whereF1(q−1) = E1(q−1) and

F2(q−1) =
(1−δ )q−1

1− (λ +δ )q−1 +λq−2 (11)

Denote byω̄(t) the debiased (approximately) frequency es-
timate. The simplest solution is to set

ω̄(t− l) = ω̂(t) (12)

wherel is an integer measure of a delay introduced by the
filter F2(q−1). We will show thatl can be evaluated from

l = int

[
µ
γ

]
(13)

whereint[x] denotes an integer number closest tox.
First, consider the case of linear frequency changes. Note
that the relationship (8) can be rewritten in an explicit form
asω(t) = ωo +δω t According to (9), it holds that

E[ω̂(t)] = ωo +δω

(
t− µ

γ

)
= ω(t− τ)

where
τ =

µ
γ

(14)

which leads directly to (13).
The second argument in favor of (13) comes from the classi-
cal filtering theory. The time-shifting properties of a lowpass
filter F(eiω) = A(ω)ejφ(ω) can be roughly characterized by
its nominal (low-frequency) delay time1

τnom = lim
ω 7→0

τp(ω) = lim
ω 7→0

τg(ω) (15)

1 ω stands here for the standard Fourier-domain frequency variable and
not for the angular frequency of the analyzed signal - the latter quantity is
denoted in this paper byω(t).
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whereτp(ω) = −φ(ω)/ω denotes the so-called phase de-
lay, used as a measure of delay at specific frequencies, and
τg(ω) = −dφ(ω)/dω denotes the group delay, serving as a
measure of delay over a band (group) of frequencies. Note
that for the values ofω close to zero it holds thatsinω ∼= ω ,
cosω ∼= 1, leading to

F2(ejω)∼= − jγω
γ + j(µ− γ)ω

= A2(ω)ejφ2(ω)

where

A2(ω) =
γ2ω2

γ2 +(µ− γ)2ω2

φ2(ω) = −ω−arctan
µ− γ

γ
ω

The nominal delay ofF2(q−1), evaluated according to (15),
is equal toτnom = µ/γ, which is identical with (14).

3.2 Two-step algorithm

The final solution we propose is a cascade of two filters:
the pilot2 adaptive notch filter (4), which yields preliminary
frequency estimateŝω(t), and the frequency-guided adap-
tive notch filter, fed with the debiased estimates (12), which
works out the final signal estimates̄s(t).
Since the proposed debiasing scheme is noncausal, the
frequency-guided algorithm will in fact operate on a time-
delayed input data sequence. The resulting decision delay of
k sampling intervals is acceptable in majority of signal pro-
cessing applications, such as adaptive line enhancement or
adaptive noise canceling. The proposed two-step algorithm
can be summarized as follows

pilot filter:

ε(t) = y(t)−ejω̂(t)β̂ (t−1)

β̂ (t) = ejω̂(t)β̂ (t−1)+ µε(t)

g(t) = Im

[
ε∗(t)ejω̂(t)

β̂ ∗(t−1)

]

ω̂(t +1) = ω̂(t)− γg(t)

ŝ(t) = β̂ (t) (16)

frequency-guided filter:

ε̄(t− l) = y(t− l)−ejω̂(t)β̄ (t− l −1)

β̄ (t− l) = ejω̂(t)β̄ (t− l −1)+ µε̄(t− l)

s̄(t− l) = β̄ (t− l) (17)

3.3 Extension to the multiple frequencies case

Denote by
yi(t) = ϕT(t)βi(t)+v(t)

the output of theith subsystem of (3), i.e. subsystem asso-
ciated with the frequencyωi . If the signalsy1(t), . . . ,yk(t)

2In this paper the term “pilot filter” has a different meaning than the
analogous term in [10].

were available, one could designk independent GANF al-
gorithms each of which would take care of a particular sub-
system. Sinceθ(t) = ∑k

i=1βi(t), the final estimation result
could be easily obtained by combining the partial estimates

θ̂(t) =
k

∑
i=1

β̂i(t)

Even though the signalsyi(t) are not available, one can easily
estimate them using the formula

ŷi(t) = y(t)−
k

∑
m=1
m6=i

ŷm(t|t−1)

where ŷi(t|t − 1) = ejω̂i(t)ϕT(t)β̂i(t − 1) denotes the pre-
dicted value ofyi(t), yielded by the estimation algorithm de-
signed to track parameters of theith subsystem. Note that af-
ter replacingyi(t) with ŷi(t) one obtainsε1(t) = . . . = εk(t) =
y(t)−ϕT(t)∑k

i=1ejω̂i(t)β̂i(t−1) = ε(t) i.e. all subalgorithms
are in fact driven by the same “global” prediction errorε(t).
From the system-analytic point of view, the distributed esti-
mation scheme described above is a parallel structure made
up of k identical (from the functional viewpoint) blocks.
Each block tracks a particular frequency component of the
parameter vectorθ(t).
The resulting parallel-form algorithm is summarized below.
To add some extra design flexibility, we have equipped each
subalgorithm with independently assigned adaptation gains
µi andγi .

pilot filter:

ε(t) = y(t)−ϕT(t)
k

∑
i=1

ejω̂i(t)β̂i(t−1)

β̂i(t) = ejω̂i(t)β̂i(t−1)+ µiΦ−1ϕ∗(t)ε(t)

gi(t) = Im

[
ε∗(t)ejω̂i(t)ϕT(t)β̂i(t−1)

β̂H
i (t−1)Φβ̂i(t−1)

]

ω̂i(t +1) = ω̂i(t)− γigi(t)

i = 1, . . . ,k

θ̂(t) =
k

∑
i=1

β̂i(t) (18)

frequency-guided filter:

ε̄(t− l) = y(t− l)

− ϕT(t− l)
k

∑
i=1

ejω̂i(t−l+l i)β̄i(t− l −1)

β̄i(t− l) = ejω̂i(t−l+l i)β̄i(t− l −1)

+ µiΦ−1ϕ∗(t− l)ε̄(t− l)

i = 1, . . . ,k

θ̄(t− l) =
k

∑
i=1

β̄i(t− l) (19)

wherel = max{l1, . . . , lk} andl i = int[µi/γi ], i = 1, . . . ,k.
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Remark 1
When the matrixΦ is not known, or when it changes with
time, it can be replaced in (18) and (19) with the following
estimate

Φ̂(t) = λoΦ̂(t−1)+(1−λo)ϕ∗(t)ϕT(t)

where0 < λo < 1 denotes a forgetting constant (e.g.λo =
0.9).

Remark 2
When k > 1, the ALF analysis carried out above is valid
as long as the estimated frequencies remain well-separated.
When frequency tracking is disabled (γ = 0, ω̂(0) = ωo),
the first-order parameter tracking properties of (4) are char-
acterized by the relationshipE[θ̂(t)] ∼= T(q−1)θ(t) where
T(q−1) = µ/[1− (1− µ)ejωoq−1] is a narrow-band extrac-
tion filter centered at the frequencyωo, with bandwidth
B3dB

∼= 2µ. Therefore, the frequency separation condition
for (18) can be approximately expressed in the form

|ωi(t)−ω j(t)|> µi + µ j , ∀ i 6= j, ∀t (20)

When the above condition is not fulfilled, the bandwidths of
the extraction filters partially overlap, making the behavior of
the entire structure difficult to predict. It should be stressed,
however, that the proposed algorithm works pretty well even
if the frequency separation condition is violated.

Remark 3
So far we have been assuming that the adaptation gains in
(18)-(19) are fixed. In order to optimize tracking perfor-
mance of an GANF filter one can equip it with an additional
gain-tuning loop. Such self-optimizing version of the algo-
rithm, capable of automatic tuning of its adaptation gains,
was proposed in [11]. Quite obviously, when the adaptation
gains are time-varying, the estimation delayτ is also a time-
dependent quantity. The value ofτ(t) can be determined by
examining the “response” of the GANF algorithm to linear
frequency changes.

4. COMPUTER SIMULATIONS

The aim of the simulation experiment was to check the sys-
tem tracking capabilities of the GANF algorithm (18) - (19).
The simulated system, inspired by channel estimation appli-
cations, was governed by

y(t) = θ(t)u(t)+v(t)

where
θ(t) = a1ej ∑t

s=1 ω1(s) +a2ej ∑t
s=1 ω2(s)

i.e. it was a single-tap FIR system (n= 1) with two modes of
parameter variation (k = 2). The weighting coefficients had
constant valuesa1 = 2− j anda2 = 1+ 2 j. The white 4-
QAM sequence was used as the input signal (u(t) =±1± j,
σ2

u = 2) and the noise was complex Gaussian with variance
σ2

v = 1 (SNR=13 dB).
Figure 1 shows evolution of the instantaneous frequen-
cies ω1(t) and ω2(t), and trajectories of the correspond-
ing frequency estimates obtained from the regular multiple-
frequency GANF algorithm (18) forµ = µ1 = µ2 = 0.03and
γ = γ1 = γ2 = 0.00045. The plots gathered in

0 1000 2000 3000 4000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8 ω
1
(t) , ω

2
(t)

t

Figure 1: True system frequency changes (thin lines)
and typical trajectories of frequency estimates (thick lines)
yielded by the GANF algorithm (µ = 0.03, SNR=13 dB).

Figure 2 allow one to compare tracking performance of the
regular algorithm and of its debiased version. To obtain
meaningful quantitative results the comparison was made in
five analysis intervals:T1 = [501,1000], T2 = [1001,1500],
T3 = [1501,2000], T4 = [2001,2500] andT5 = [2501,3000],
corresponding to different types of frequency changes. Since
the frequency trajectoriesω1(t) andω2(t) intersect at instant
t = 2750, the frequency separation condition (20) is not ful-
filled in the intervalT5.
The accumulated frequency tracking errors were defined as

Σω = ∑
t∈T

min
{
[ω̂1(t)−ω1(t)]2 +[ω̂2(t)−ω2(t)]2,

[ω̂1(t)−ω2(t)]2 +[ω̂2(t)−ω1(t)]2
}

and the system tracking errors were evaluated according to

Σθ = ∑
t∈T
|(θ̂(t)−θ(t))u(t)|2 = σ2

u ∑
t∈T
|θ̂(t)−θ(t)|2

The same settings were adopted for both subalgorithms:µ =
µ1 = µ2, γ = γ1 = γ2. To reduce the number of design de-
grees of freedom, the frequency adaptation gainγ was set to
µ2/2 – see [3]. The plots gathered in Figure 2 show how per-
formance of the compared algorithms – the original GANF
algorithm (4) and its debiased version (18) - (19) – depends
on the choice of the adaptation gainµ for different types of
frequency changes. The plots depict ensemble averages (cor-
responding to 50 realizations of measurement noise) of the
sums of the squared frequency and signal estimation errors.
In all cases frequency debiasing led to improved tracking re-
sults.
The ruggedness of the plots corresponding to the intervalT5
is caused by the frequency switching effect, which can be
observed when the separation condition (20) is not fulfilled.
When passbands of two (G)ANF filters overlap, the corre-
sponding estimates, saŷω1(t) andω̂2(t), “switch” at random
moments betweenω1(t) andω2(t). This means that in some
time intervalsω̂1(t) follows ω1(t) andω̂2(t) follows ω2(t),
while in some other intervalŝω1(t) follows ω2(t) andω̂2(t)
follows ω1(t). Frequency switching produces jitter which
can be seen at both error plots.
Summing up, frequency debiasing allows one to improve
tracking capabilities of GANF algorithms. First, irrespec-
tive of the choice of design variablesµ andγ, the corrected
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Figure 2: Dependence of the averaged sums of the squared
frequency estimation errors̄Σω and system estimation errors
Σ̄θ on the adaptation gainµ. Comparison involves the esti-
mates yielded by the original GANF algorithm (×) and by
its frequency-debiased version proposed in the paper (◦). In
each pair of figures, corresponding to one of 5 analysis in-
tervals described in the paper (T1, T2, T3, T4 andT5 – from
top to bottom), the left figure depicts accumulated frequency
errors and the right figure – the accumulated system errors.
All plots were evaluated on a grid of 100 equidistant values
of µ .

estimates are always more accurate than the original esti-
mates. Second, and perhaps more importantly from the prac-
tical viewpoint, the debiased algorithms are more robust to
the choice of design variables.

5. CONCLUSION

Bias (lag) errors seriously limit tracking capabilities of adap-
tive filters. We have shown that frequency biases, which arise
in generalized adaptive notch filtering (GANF) algorithms,
can be significantly reduced by incorporating in the adap-
tive loop a judiciously chosen decision delay. Such delay
is acceptable in many practical applications. The proposed
solution is a cascade of two filters. The “pilot” generalized
adaptive notch filter provides preliminary (biased) frequency
estimates. The estimates yielded by the pilot algorithm are
fed into the second algorithm - the “frequency-guided” gen-
eralized adaptive notch filter, which operates on a delayed
data sequence. We have shown that frequency debiasing im-
proves tracking performance of GANF algorithms and in-
creases their robustness to the choice of design parameters.
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