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ABSTRACT 

The recently proposed discrete Pascal transform possesses a 
computational complexity for an N-point vector of the order 
of N2 for both multiplications and additions. In the present 
work an efficient structure is proposed, which eliminates the 
multiplications and halves the number of additions. 

1. INTRODUCTION 

The discrete Pascal transform (DPT) was recently introduced 
by Aburdene and Goodman [1]. It belongs to the family of 
the discrete polynomial transforms, and it is based on a varia-
tion of the Pascal matrix [1,2,3]. Such transforms are used in 
signal and image processing for communication and control 
systems [1,4,5]. Two interesting applications that have re-
cently reported are those of filter design and discrete-time 
signal interpolation [6,7]. 
 
Pascal’s triangle is a geometric arrangement of the binomial 
coefficients in a triangle [2, 3]. The first eight rows of Pas-
cal’s triangle are shown in Fig. 1. 
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Figure 1 - The first eight rows of Pascal’s triangle in two different 

presentation variations 
 
Each number of the triangle is equal to the binomial coeffi-
cient aij, where  
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As with all discrete transforms the main concern is their in-
creased computational complexity, which by their definition 
as matrix multiplications, is of the order of N2 for data se-
quences of length N. In the present work a reduced computa-
tional complexity scheme is proposed for the DPT. This 
scheme has a complexity of ½ N(N-1) additions and no mul-
tiplications. Such a reduced complexity will facilitate the use 
of the DPT in more applications. 

The work is structured as follows: In section 2 the DPT is 
introduced. Its complexity is analyzed in section 3. A compu-
tationally efficient realization of the DPT is given in section 
4. 

2. THE DISCRETE PASCAL TRANSFORM 

The discrete Pascal transform (DPT) X of the 1D data vector 
x is defined as 

X = P x      (2) 
 
where x, X are N×1 vectors and P  is the N×N Pascal trans-
form  matrix. The elements of the Pascal transform matrix 
are equal to  
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with i=0, 1, 2,…, N-1. 
 
From (3) it is easily deduced that the elements of the Pascal 
transform matrix are obtained directly from the Pascal’s tri-
angle entries (Fig. 1b) by alternating the signs of the col-
umns. The Pascal’s transform matrices for N=2, N=4, and 
N=8 are given below. (Zero elements have been denoted by 
dots for presentation clarity purposes). 
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       1        
      1  1       
     1  2  1      
    1  3  3  1     
   1  4  6  4  1    
  1  5  10  10  5  1   
 1  6  15  20  15  6  1  
1  7  21  35  35  21  7  1 

1        
1 1       
1 2 1      
1 3 3 1     
1 4 6 4 1    
1 5 10 10 5 1   
1 6 15 20 15 6 1  
1 7 21 35 35 21 7 1 
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The basic properties of the P matrices are the following: 
 

• The elements of the first column are equal to 1. 
• All matrices are lower triangular. 
• The sum of the elements of each row (except of the 

first one) is equal to zero. 
• All matrices are equal to their inverses. 

 
The DPT of eq. (2) can also be expressed as: 
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where xn is the data sequence, Xk are the transform coeffi-
cients and k=0, 1, …, N-1. 
 
Since the elements of the Pascal transform matrix that are 
above the diagonal are equal to zero, i.e. pkn =0 for k>n, the 
upper limit of the summation of eq. (7) becomes equal to k 
(instead of N-1). Thus the forward DPT can be rewritten as 
follows: 
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It was mentioned above that the Pascal transform matrix is 
equal to its inverse,  
 

P-1 = P    (10) 
 
Thus, the inverse DPT is written in matrix form as  
 

x = P X    (11) 
 
This can also be expressed as 
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Equations (9) and (13) constitute the forward and inverse 
DPT, respectively. 
 
The basis functions of the DPT are calculated via the poly-
nomials ( ),, jxP  where 
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for 0≥≥ xj . In general, each polynomial ( )1, +jxP  can be 

recursively computed by means of the formula  
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These polynomials when evaluated at the discrete points 
1,...,1,0 −= Nx  produce the columns of the Pascal trans-

form matrix PN, which actually constitute the basis vectors of 
the transform. 

3. COMPUATIONAL COMPLEXITY 

The computation of the DPT of an N-point vector based on 
matrix definition of eq. (2) results in N2 multiplications and 
N(N-1) additions, i.e. 

MN=N2    (16) 
and  

AN=N(N-1)   (17) 
 
If we take into account that the upper triangle entries of the 
transform matrix are zero and the diagonal entries are equal 
to 1 or -1, i.e. no multiplications are needed, then the opera-
tions counts become: 
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This is also the case when eq. (9) is used for the computation 
of the DPT.  
 
Going one step further and taking into account that the en-
tries of the first column of the matrix are all equal to 1, i.e. no 
multiplications are needed, MN reduces to  

( ) ( ) ( ) 13
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4. EFFICIENT COMPUTATION 

The computational complexity of the DPT could be highly 
reduced if the computations were performed in a recursive 
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manner, namely if the transform coefficients X0, X1,…, Xk-1 
were used for the computation of Xk [8].   
  
4.1 Computation of a 2-point DPT (N=2) 
 

Let [ ]Txxx 10= be the data and [ ]TXXX 10= be the DPT 

coefficients. The transform coefficients X are calculated 
through eq. (2) using the transform matrix (4), as 
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The flow graph for the calculation of (21) is shown in Fig. 
2. In fact, only the lower part of the known FFT butterfly is 
used, where we have only a subtraction of the two inputs. 
The complexity of the calculation is equal to: M2=0, A2=1. 

 

x0

x1

X0=x0

X1=x0-x1
 

 
Figure 2 - The 2-point DPT butterfly 

 
 
4.2 Calculation of a 4-point DPT (N=4)     
 
For the calculation of the 4-point DPT we have: 

X = P x 
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In fact we have decomposed the 4×4 Pascal transform ma-
trix P (or P4 for clarity) into a product of simple lower tri-
angular matrices Q, the entries of which consist only of 0, 
1, and -1, namely P4=Q3Q2Q1, where  
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In general, the entries qi,j of each matrix Qk are defined as: 
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The flow graph for the calculation of the 4-point DPT ac-
cording to (22) is shown in Fig. 3. The calculation is com-
pleted in three stages (N-1= 3) and only six subtractions 
(3+2+1=6) are required, or M4=0 and A4=6.     
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X2
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1 32

 
 

Figure 3 - The 4-point DPT flow graph  
 
In a similar way the 8-point DPT can be deduced, as de-
picted in Fig. 4. 
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Figure 4. The 8-point DPT flow graph 

 
 
4.3 Calculation of an N-point DPT 
 
In the flow graph of an N-point DPT there would exist N-1 
stages, and: N-1 butterflies at stage 1, N-2 butterflies at 
stage 2,…,N-m butterflies at stage m. For each butterfly 
only one subtraction is needed. No multiplications are 
needed for the whole computation. The number of subtrac-
tions is equal to 1 for stage N-1, 2 for stage N-2,...,N-1 for 
stage 1. This gives a total of  
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subtractions. Thus the total computational complexity for 
the N-point DPT is 

MN = 0    (24) 
and 

( )1
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−= NNAN   (25) 

The computational complexity for each of the methods pre-
sented above are summarized in Table I. It is clear that the 
proposed approach, which is based on a butterfly structure, 
possesses the lowest complexity and actually constitutes a 
fast Pascal transform (FPT).  

 
 

Table I - Computational complexity for the 1D DPT 
 Direct matrix 

multiplication 
(eq. 16,17) 

Lower trian-
gular matrix 
(eq. 18,19) 

Lower tri-
angular with 

1’s in the 
first column 

(eq. 20) 

Proposed 
FPT (butter-
fly based) 
(eq. 24,25) 

 
MN 

 

 
N2 

 
½ N(N-1) 

 
½ N(N-1)-

(N-1) 

 
0 

 
AN 

 

 
N(N-1) 

 
½ N(N-1) 

 
½ N(N-1) 

 
½ N(N-1) 

 

5. CONCLUSIONS 

The discrete Pascal transform is a new promising tool for 
many signal and image processing applications. The triangu-
lar structure of the discrete Pascal transform matrix produces 
a useful localization property, something that makes it at-
tractive in bump and edge detection applications [1]. The 
computation burden for the 1D case is always high and of 
the order of N2 for both multiplications and additions. In the 
present work a new approach has been proposed, which 
eliminates the multiplications and halves the number of ad-
ditions. The calculation of every new transform coefficient 

is achieved by pairing the additions at each stage and com-
bining the results of the previous stage.  
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