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ABSTRACT

This paper addresses subspace-based estimation and its pur-
pose is to complement previously available theoretical re-
sults generally obtained for specific algorithms. We focus on
asymptotically (in the number of measurements) minimum
variance (AMV) estimators based on estimates of orthogonal
projectors obtained from singular value decompositions of
sample covariance matrices associated with the general linear
model yt = A(Θ)xt +nt where the signals xt are complex
circular or noncircular and dependent or independent. Using
closed-form expressions of AMV bounds based on estimates
of different orthogonal projectors, we prove that these AMV
bounds attain the stochastic Cramer-Rao bound (CRB) in the
case of independent circular or noncircular Gaussian signals.

1. INTRODUCTION

Subspace-based estimates, i.e., estimates obtained by ex-
ploiting the orthogonality between a sample subspace and a
parameter-dependant subspace, have proved useful in many
applications in signal processing. These methods have been
applied successfully to a variety of problems, including array
processing and linear system identification to estimate for ex-
ample, directions-of-arrival (DOA) in narrowband array pro-
cessing (see e.g., [1] and [2]) and finite impulse responses
of single-input multiple-output (SIMO) channels (see e.g.,
[3]). There is considerable literature about the performance
of such algorithms obtained in specific contexts, but few of
them offer generic results. Among them, the work by Car-
doso and Moulines [4] discusses the generalization of the op-
timal subspace fitting approach introduced by Ottersten et al.
[5] in the DOA estimation context and shows the equivalence
between subspace fitting and subspace matching.

The aim of this paper is to complement these generic re-
sults by extending the efficiency of the optimal DOA sub-
space fitting algorithms indirectly derived by comparison to
the stochastic maximum likelihood estimator [5].

The paper is organized as follows. The generic signal
model and a motivating example in the context of SIMO and
SISO channels with noncircular inputs are given in Section 2.
Section 3 applies the notion of AMV and asymptotically best
consistent estimator (ABC) introduced by Porat and Fried-
lander [6] and Stoica et al [7] respectively, extends it to dif-
ferent projection-based statistics, and proves that these AMV
bounds attain the stochastic Cramer-Rao bound (CRB) in the
case of independent circular or noncircular Gaussian signals.
Finally, Section 4 illustrates the AMV bound in the context
of SISO channels with a BPSK input.

2. SIGNAL MODEL AND MOTIVATING EXAMPLE

In many applications, it is of interest to estimate the param-
eter Θ ∈ RK from the following M-variate complex valued
wide sense stationary times series

yt = A(Θ)xt +nt , t = 1, . . . ,T, (1)

where A(Θ)xt and nt model the signals of interest and addi-
tive measurement noise, respectively. In this general model,
xt and nt are independent, zero-mean, second-order station-
ary time series. (nt)t=1,...,T are assumed Gaussian com-
plex circular, independent and spatially uncorrelated with
E(ntnH

t ) = σ 2IM , while (xt)t=1,...,T are complex noncir-
cular, neither necessarily Gaussian nor independent, with
Rx = E(xtxH

t ) and R′
x = E(xtxT

t ) nonsingular.
It is assumed that the M×L matrix A(Θ) is determinis-

tic and known as a function of the unknown signal parame-
ters Θ. Of course, the probability distribution of (yt)t=1,...,T
depends on extra parameters which are also unknown, but
we are only interested here in the estimation of the parame-
ter Θ. We suppose that rank(A(Θ)) = L < M and that Θ is
uniquely1 determined by the range space of A(Θ). Conse-
quently this leads to two covariance matrices of yt that con-
vey information about Θ:

Ry = ARxAH +σ2IM
def= Rs +σ2IMand

R′
y = AR′

xA
T def= Rs′ 6= O

and Θ is uniquely determined by the common projector Πy
onto the noise subspace associated with Ry and R′

y as well.

Using the extended observation ỹt
def= (yT

t ,yt
H)T ,

Rỹ
def= E(ỹt ỹH

t ) = ÃRx̃ÃH +σ2I2M = Rs̃ +σ2I2M

with
Ã def=

(
A O
O A∗

)
and Rx̃

def=
(

Rx R
′
x

R
′∗
x R∗

x

)
,

where we suppose here that Rx̃ is nonsingular, Θ is also
determined by the orthogonal projector Πỹ onto the 2L-
dimensional noise subspace of ỹt .

These covariance matrices are traditionally estimated
by Ry,T = 1

T ∑T
t=1 ytyH

t , R′
y,T = 1

T ∑T
t=1 ytyT

t and Rỹ,T =
1
T ∑T

t=1 ỹt ỹH
t , respectively. Thus, we can consider the orthog-

onal projectors Πy,T , Π′
y,T and Πỹ,T onto the noise subspace

of the sample covariance matrices Ry,T , R′
y,T and Rỹ,T re-

spectively. We note that there is not a one-to-one mapping
between (Πy,T ,Π′

y,T ) and Πỹ,T , contrary to the one-to-one
mapping (Ry,T ,R′

y,T )←→Rỹ,T .

1For system identification, note that a constraint on Θ must be added.
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The first idea to estimate Θ from Ry,T and R′
y,T is to use

similar subspace-based algorithms derived from the projec-
tion matrices Πy,T and Π′

y,T . For example, for BPSK or
OQPSK modulated inputs, the MUSIC-like algorithm that
estimates the impulse response of a SIMO channel given in
[3] from Πy,T applies to Π′

y,T in the same way by replacing
the EVD of Ry,T by the SVD of the complex symmetric ma-
trix R′

y,T . Consequently a problem crops up: how does one
combine the statistics Πy,T and Π′

y,T to improve the estimate
of Θ? Is it possible to attain the AMV bound based on the
statistic (Ry,T ,R′

y,T )?
Another idea to estimate Θ from Ry,T and R′

y,T is to use
subspace-based algorithms derived from the projection ma-
trix Πỹ,T . This approach has been proposed for the estima-
tion of SIMO and SISO channels for BPSK or OQPSK mod-
ulated inputs in [8]. A question arises as well: Does there
exist an algorithm based on the projector Πỹ,T whose perfor-
mance approaches that of the AMV estimator based on Ry,T
and R′

y,T ?

3. ASYMPTOTIC EFFICIENCY OF
SUBSPACE-BASED AMV ESTIMATORS

3.1 Asymptotically minimum variance subspace-based
estimator

A solution of the two aforementioned problems is to use the
notion of AMV estimators based, respectively, on the matrix-
valued statistics (Πy,T ,Π′

y,T ) and Πỹ,T . With this aim, we
apply the following extension of the standard result [9] on
AMV estimators to orthonormal projectors proved in [10]:

Lemma 1 The covariance matrix CΘ of the asymptotic dis-
tribution of an estimator of Θ given by an arbitrary con-
sistent subspace algorithm based on the statistics Πy,T ,
(Πy,T ,Π′

y,T ) or Πỹ,T is bounded below by the real symmet-

ric matrix
(
S HC#

s S
)−1 where S

def= ds(Θ)
dΘ with s(Θ) is re-

spectively vec(Πy), vec(Πy,Π′
y) or vec((Πỹ) and where Cs

is the singular first covariance matrix of the asymptotic dis-
tribution of the involved statistics.

CΘ ≥
(
S HC#

s S
)−1

. (2)

Following the proof given [10] in the case of independent
observations for the DOA parametrization, the following ex-
pressions of Cs are obtained for the generic model (1) for
dependent or independent observations.

Lemma 2 The first covariance matrices CΠ, C Π
Π′

and CΠ̃

of the asymptotic distribution of vec(Πy,T ), vec(Πy,T ,Π′
y,T )

and vec(Πỹ,T ) are given by

CΠ = (Π∗
y ⊗U)+(U∗⊗Πy) (3)

C Π
Π′

=
(

Π∗
y ⊗U Π∗

y ⊗U′′

Π∗
y ⊗U′′H Π∗

y ⊗U′

)
(4)

+
(

U∗⊗Πy U′′∗⊗Πy
U′′T ⊗Πy U′∗⊗Πy

)

CΠ̃ = (I+K(J⊗J))
(
(Π∗

ỹ ⊗ Ũ)+(Ũ∗⊗Πỹ)
)

(5)

with U def= σ2R#
sRyR#

s , U′ def= σ2R
′∗#
s R∗

yR
′#
s , U′′ def=

σ2R#
sR

′
yR

′#
s and Ũ def= σ2R#

s̃RỹR#
s̃ , and where K is the

vec-permutation matrix which transforms vec(.) to vec(.T )

for any square matrix and J =
(

O I
I O

)
.

We note that the previous expressions of CΠ, C Π
Π′

and CΠ̃,

do not depend on the temporal correlation and the fourth-
order moments of xt . Furthermore, CΠ does not depend on
R′

y. Consequently we have proved the following:

Theorem 1 The asymptotic performance given by an arbi-
trary consistent subspace-based algorithm built from Πy,T ,
(Πy,T ,Π′

y,T ) or Πỹ,T depends on the distribution of the time
series xt through the second-order moments of xt only. Fur-
thermore, for subspace-based algorithms built from Πy,T ,
this asymptotic performance depends only on the first covari-
ance matrix Rx.

3.2 Relation to the Cramer-Rao bound in the Gaussian
case
To evaluate the efficiency of the subspace-based AMV esti-
mators previously introduced, we consider the particular case
where the signals xt are independently Gaussian distributed.
The following main contribution of this paper is proved in
the Appendix.

Theorem 2 When the signals are independently Gaussian
distributed, the AMV bound (2) associated with the statistics
vec(Πy,T ), [resp. vec(Πy,T ,Π′

y,T ) and vec(Πỹ,T )] are equal
to the statistical CRB associated with the circular [resp. non-
circular] Gaussian distribution.

CAMV(Π)
Θ = CRBCG

Θ

=
σ2

2

{
ℜ

[
dHvecA

dΘ
(HT ⊗Πy)

dvecA
dΘ

]}−1

(6)

CAMV(Π,Π′)
Θ = CRBNCG

Θ

=
σ2

2

{
ℜ

[
dHvecA

dΘ
(HT

1 ⊗Πy)
dvecA

dΘ

]}−1

(7)

CAMV(Π̃)
Θ = CRBNCG

Θ . (8)

with H def= RxAHR−1
y ARx and H1

def=

[RxAH ,R′
xA

T ]R−1
ỹ

[
ARx
A∗R′∗

x

]
.

Remark 1: Note that for DOA parameterizations,

A(Θ) = (a(θ1, ...,θK1), ...,a(θ(K2−1)K1+1, ...,θK2K1))

for K1 parameters per source with K2 sources (K = K1K2)
and consequently, relations (6) and (7) can be written in the
following forms:

CRBCG
Θ =

σ2

2
{

ℜ
[
DHΠyD¯ (

HT ⊗1
)]}−1

CRBNCG
Θ =

σ2

2
{

ℜ
[
DHΠyD¯ (

HT
1 ⊗1

)]}−1

where 1 is a K1 × K1 matrix of 1 and D def=[
∂a(θ1,..,θK1 )

∂θ1
, ..,

∂a(θ(K2−1)K1+1,..,θK2K1 )
∂θK2K1

]
.
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Remark 2: Using the asymptotic equivalence between op-
timal subspace fitting and optimal subspace matching esti-
mates proved in [4], this result states that all these algorithms
give efficient estimates of Θ in the independent Gaussian
case. Note that this result has been indirectly proved in [5]
for the subspace fitting approach introduced by Viberg in the
context of DOA of Gaussian circular sources by comparai-
son to the stochastic maximum likelihood estimator which is
asymptotically efficient in the Gaussian case.
Remark 3: Because the statistic Πy,T is a function of

(Πy,T ,Π′
y,T ), we have CAMV(Π,Π′)

Θ ≤ CAMV(Π)
Θ and conse-

quently CRBNCG
Θ ≤CRBCG

Θ for independent Gaussian sig-
nals of same first spatial covariance matrices Rx.

4. ILLUSTRATIVE EXAMPLE

Consider now the specific case of blind identification of noisy
SISO FIR channels of order M− 1, yt = ∑M−1

k=0 hkxt−k + nt ,
whose input xt is a sequence of independent BPSK symbols
{−1,+1} with equal probabilities. By stacking M samples
of the received signal, we obtain the vector:

yt
def= (yt ,yt−1, ...,yt−M+1)T = A(Θ)xt +nt

with xt
def= (xt ,xt−1, ...,xt−2M+2)T and where A(Θ) is the fol-

lowing M× (2M−1) filtering matrix

A(Θ) =




h0 · · · · · · hM−1
. . . . . .

h0 · · · · · · hM−1


 ,

with h0 = 1. In this case Θ =
[ℜ(h1), ..ℜ(hM−1), Im(h1), .., Im(hM−1)]T ∈ RK , with
K = 2(M − 1). Naturally, Θ is not identifiable from the
second-order information Ry alone and consequently not
from Πy alone either. But with (Ry,R′

y), it becomes iden-
tifiable [8] if and only if the polynomial h(z) = ∑M−1

k=0 hkzk

has no real zero and no conjugated zeros. In this case,
subspace-based algorithms can be considered from the
extended observation ỹt

ỹt =
[

A(Θ)
A∗(Θ)

]
xt + ñt

and the AMV bound (6) applies when the a priori knowledge
of the independence of the symbols is not taken into account,

where here A(Θ) and Ry are replaced by
[

A(Θ)
A∗(Θ)

]
and

Rỹ =
[

A(Θ)
A∗(Θ)

][
AH(Θ) AT (Θ)

]
+σ2I2M .
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Fig.1 Normalized MSE(h)=Tr(CAMV
Θ ) as a function of the phase α of the

root z1 for SNR= 10dB and 20dB.

Fig.1 exhibits the normalized MSE(h)=Tr(CAMV
Θ ) which

is a lower bound on the MSE of any unbiased estimate based
on the projector Πỹ,T . h(z) = (1− z−1

1 z)(1− z−1
2 z) with

z1 = 0.8eiα and z2 = 1.25eiπ/4 where α varies from 0 to π/2.
We note that the MSE increases dramatically when the zero
z1 approaches the real axis for which Θ becomes nonidentifi-

able. This behavior is explained by (6) for which
[

A(Θ)
A∗(Θ)

]

becomes rank deficient and consequently, the associated ma-
trix H becomes rank deficient as well.

A. APPENDIX: PROOF OF THEOREM 2

We separately consider the three statistics where we will
make relatively frequent use of the following identities:

vec(ABC) = (CT ⊗A)vec(B) (9)

Tr(ABCD) = vecT (AT )(DT ⊗B)vec(C) (10)

Projector vec(Πy,T ):
Because Nullspace(R#

s ) = Span(Πy), we have UΠy =
O. This implies the two relations

(Π∗
y ⊗U)(U∗⊗Πy)H = Π∗

yU
T ⊗UΠy = O

(Π∗
y ⊗U)H(U∗⊗Πy) = Π∗

yU
∗⊗UΠy = O,

which, thanks to [11, Th.5.17], enables one to write the
Moore-Penrose inverse of CΠ given by (3) in the form:

C#
Π = (Π∗

y ⊗U)# +(U∗⊗Πy)#

= (Π#
y
∗⊗U#)

+ (U#∗⊗Π#
y) = (Π∗

y ⊗U#)+(U#∗⊗Πy)

=
1

σ2

(
(Π∗

y ⊗AHAH)+(A∗H∗AT ⊗Πy)
)
,(11)

where the second equality is by [12, Th.5 (xvii),
p.33] and the last equality is deduced from U# =

1
σ2 RsR−1

y Rs = 1
σ2 ARxAHR−1

y ARxAH = 1
σ2 AHAH with

H def= RxAHR−1
y ARx, thanks to [11, Th.5.6 and Th.5.7] be-

cause the Hermitian matrices Rs and Ry have a common ba-
sis of orthonormal eigenvectors. So, from Theorem 1

[(
CAMV(Π)

Θ

)−1
]

k,l
=

1
σ2

∂vecT (ΠT
y )

∂θk

(
(ΠT

y ⊗AHAH)

+ ((AHAH)T ⊗Πy)
) ∂vec(Πy)

∂θl

=
1

σ2 Tr
(

∂Πy

∂θk
AHAH ∂Πy

∂θl
Πy

+
∂Πy

∂θk
Πy

∂Πy

∂θl
AHAH

)

=
2

σ2 ℜ
[

Tr
(
AH ∂Πy

∂θk
Πy

∂Πy

∂θl
AH

)]
,

where we have used identity (10) in the second equality.
Then ΠyA = O implying

∂Πy

∂θi
A+Πy

∂A
∂θi

= O, i = k, l, (12)
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we have
[(

CAMV(Π)
Θ

)−1
]

k,l
=

2
σ2 ℜ

[
Tr

(
∂AH

∂θk
Πy

∂A
∂θl

H
)]

. (13)

This proves the second part of (6) thanks to (10). To
obtain the associated CRB, we follow the proof given in
[13] where the CRB for the DOA parameter is directly
derived from the Slepian-Bangs formula. All the steps
of this proof apply where [13, rel. (16)] is replaced by
∂Ry
∂θk

= ∂A
∂θk

RxAH + ARx
∂AH

∂θk
and where [13, rel. (18)]

becomes Zk = R−1/2
y ARx

∂AH

∂θk
R−1/2

y . Consequently [13,
rel. (30)] becomes, (6) thanks to [13, rel. (31)] and (10).

Projector vec(Πy,T ,Π′
y,T ):

As for the statistic vec(Πy,T ), we have UΠy = U′Πy =
U′′Πy = O, which implies after straightforward algebraic
manipulations, the two relations

(
Π∗

y ⊗U Π∗
y ⊗U′′

Π∗
y ⊗U′′H Π∗

y ⊗U′

)

(
U∗⊗Πy U′′∗⊗Πy
U′′T ⊗Πy U′∗⊗Πy

)H

= O (14)

(
Π∗

y ⊗U Π∗
y ⊗U′′

Π∗
y ⊗U′′H Π∗

y ⊗U′

)H

(
U∗⊗Πy U′′∗⊗Πy
U′′T ⊗Πy U′∗⊗Πy

)
= O.(15)

This enables one to write, thanks to [11, Th.5.17], the Moore-
Penrose inverse of C Π

Π′
given by (4) in the form:

C#
Π
Π′

=
(

Π∗
y ⊗U Π∗

y ⊗U′′

Π∗
y ⊗U′′H Π∗

y ⊗U′

)#

+
(

U∗⊗Πy U′′∗⊗Πy
U′′T ⊗Πy U′∗⊗Πy

)#

=
((

K O
O K

)((
U U′′

U′′H U′

)
⊗Π∗

y

)

(
K O
O K

))#

+
((

U∗ U′′∗
U′′T U′∗

)
⊗Πy

)#

=

((
K O
O K

)((
U U′′

U′′H U′

)#

⊗Π∗
y

)

(
K O
O K

))
+

((
U∗ U′′∗
U′′T U′∗

)#

⊗Πy

)
, (16)

where we have used the identity A⊗B = K(B⊗A)K [12,
Th.(4), p.47] in the second equality, and [11, Th.5.8] and [12,
Th.5 (xvii), p.33] in the third equality. Noting that

(
K O
O K

)
∂vec(Πy,Πy)

∂θi
=

(
K ∂ vec(Πy)

∂θi

K ∂vec(Πy)
∂θi

)

=




∂vec(Π∗
y)

∂θi
∂ vec(Π∗

y)
∂θi


 , i = k, l,

we have from (16)
[(

CAMV(Π,Π′)
Θ

)−1
]

k,l
= 2ℜ

[
∂vecT

∂θk

(
Πy
Πy

)T




((
U U′′

U′′H U′

)#
)T

⊗Πy


 ∂vec(Πy,Πy)

∂θl




= 2ℜ

[
Tr

(( ∂Πy
∂θk
∂Πy
∂θk

)
Πy

(
∂Πy
∂θl

∂Πy
∂θl

)(
U U′′

U′′H U′

)#
)]

where identity (10) is used in the second equality. Then from
the definition of the matrices U, U′ and U′′ given in Lemma
1, we have
(

U U′′
U′′H U′

)
= σ2

(
R#

s O
O R

′∗
s

#

)
Rỹ

(
R#

s O
O R

′
s
#

)
,

whose Moore-Penrose inverse is given in the following
thanks to [11, Th.5.14] and extension of [11, Th.5.6 and
Th.5.7] to the singular value decompositions of the matrices(

R#
s O

O R
′∗
s

#

)
, Rỹ and

(
R#

s O
O R

′
s
#

)

(
U U′′

U′′H U′

)#

=
1

σ2

(
Rs O
O R

′
s

)
R−1

ỹ

(
Rs O
O R

′∗
s

)

=
1

σ2

(
ARxAH O

O AR′
xA

T

)
R−1

ỹ

(
ARxAH O

O A∗R′∗
x AH

)

=
1

σ2

(
A O
O A

)(
RxAH O

O R′
xA

T

)

R−1
ỹ

(
ARx O
O A∗R′∗

x

)(
AH O
O AH

)

=
1

σ2

(
A O
O A

)
H̃

(
AH O
O AH

)
,

with H̃
def=

(
RxAH O

O R′
xA

T

)
R−1

ỹ

(
ARx O
O A∗R′∗

x

)
.

Consequently,

[(
CAMV(Π,Π′)

Θ

)−1
]

k,l
=

2
σ2 ℜ

[
Tr

(( ∂Πy
∂θk
∂Πy
∂θk

)
Πy

(
∂Πy
∂θl

∂Πy
∂θl

)(
A O
O A

)
H̃

(
AH O
O AH

))]

=
2

σ2 ℜ

[
Tr

((
AH ∂Πy

∂θk

AH ∂Πy
∂θk

)
Πy

(
∂Πy
∂θl

A ∂Πy
∂θl

A
)

H̃
)]

.
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Applying identity (12), we obtain:
[(

CAMV(Π,Π′)
Θ

)−1
]

k,l
=

2
σ2

ℜ

[
Tr

((
∂AH

∂θk
Πy

∂A
∂θl

∂AH

∂θk
Πy

∂A
∂θl

∂AH

∂θk
Πy

∂A
∂θl

∂AH

∂θk
Πy

∂A
∂θl

)
H̃

)]

which gives after straightforward algebraic manipulations
[(

CAMV(Π̃)
Θ

)−1
]

k,l
=

2
σ2

ℜ
[

Tr
(

∂AH

∂θk
Πy

∂A
∂θl

[RxAH ,R′
xA

T ]R−1
ỹ

[
ARx
A∗R′∗

x

])]
.

This proves the second part of (7) thanks to (10). To obtain
the associated CRB, we follow the proof given in [14] for the
DOA parameters of noncircular sources where

Zk = R−1/2
ỹ ÃRỹ

∂ÃH

∂θk
R−1/2

ỹ .

Projector vec(Πỹ,T ):
To prove Theorem 2 for this statistic, we first must sim-

plify the expression of CAMV(Π̃)
Θ . Because L def= I+K(J⊗J)

of (5) satisfies L2 = 2L, the Hermitian matrix CΠ̃ becomes:

CΠ̃ = 1
2LCL with C def= (Π∗̃

y ⊗ Ũ)+ (Ũ∗⊗Πỹ) and a sim-
pler expression of the AMV bound can be obtained from the
following minimization problem:

CAMV(Π̃)
Θ = min

DS =IK
DCΠ̃DH =

1
2

min
DS =IK

DLCLDH .

Checking that LS = (I+K(J⊗J)) dvec(Πỹ)
dΘ = S +

Kvec
(
J dΠỹ

dΘ J
)

= S + Kvec
(

dΠỹ
dΘ

T
)

= 2S thanks to

identity (9) for the second equality and the property JΠỹJ =
ΠT

ỹ [15] for the third equality; the constraints DS = I and
DLS = 2I are equivalent. Consequently the previous mini-
mization is tantamount to

CAMV(Π̃)
Θ = 2 min

DL
2 S =IK

(
DL

2

)
C

(
DL

2

)H

.

Because C is structured similarly as CΠ (see (3)),
Span(S ) ⊂ Span(C). Consequently, the proof of Theorem

1 given in [10] applies and CAMV(Π̃)
Θ = 2

(
S HC#S

)−1.
Noting that C = (Π∗̃

y ⊗ Ũ) + (Ũ∗ ⊗Πỹ) is structured
similarly to CΠ, all the steps of the proof given for the statis-
tic vec(Πy,T ) extend up to equality (13) by replacing A,

Πy and H = RxAHR−1
y ARx, by Ã, Πỹ =

(
Πy O
O Π∗

y

)

(from [15]) and H̃ def= Rx̃ÃHR−1
ỹ ÃRx̃ respectively, and con-

sequently
[(

CAMV(Π̃)
Θ

)−1
]

k,l
=

1
2

2
σ2 ℜ

[
Tr

(
∂ÃH

∂θk
Πỹ

∂Ã
∂θl

H̃
)]

.

Because all the matrices involved in H̃ are structured

in the form
(

(¤) (×)
(×)∗ (¤)∗

)
, H̃ is structured in the

same form as well, i.e., H̃ =
(

H1 H2
H∗

2 H∗
1

)
with H1 =

[RxAH ,R′
xA

T ]R−1
ỹ

[
ARx

A∗R
′∗
x

]
. Then

∂ÃH

∂θk
Πỹ

∂Ã
∂θl

H̃ =

(
∂AH

∂θk
Πy

∂A
∂θl

H1 (×)

(×)∗ ∂AT

∂θk
Π∗

y
∂A∗
∂θl

H∗
1

)

and [(
CAMV(Π̃)

Θ

)−1
]

k,l
=

2
σ2 ℜTr

(
∂AH

∂θk
Πy

∂A
∂θl

H1

)
,

which using (10), proves (8) thanks to (7).

REFERENCES
[1] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-

Rao bound: further results and comparisons,” IEEE Trans. Acoust.
Speech, Signal Processing, vol. 38, no. 12, pp. 2140-2150, December
1990.

[2] M. Jansson, A.L Swindlehurst and B. Ottersten, “Weighted subspace
fitting for general array error models,” IEEE Trans. on Signal Process-
ing, vol. 46, no. 9, pp.2484-2498, September 1998.

[3] E. Moulines, P. Duhamel, J.F. Cardoso and S. Mayrargue, “Subspace
methods for the blind identification of multichannel FIR filters,” IEEE
Trans. Signal Processing, vol. 43, pp. 516-525, February 1995.

[4] J.F. Cardoso and E. Moulines, “Invariance of subspace based estima-
tor,” IEEE Trans. Signal Processing, vol. 48, no. 9, pp. 2495-2505,
September 2000.

[5] B. Ottersten, M. Viberg and T. Kailath, “Analysis of subspace fitting
and ML techniques for parameter estimation from sensor array data,”
IEEE Trans. on Signal Processing, vol. 40, no. 3, pp. 590-599, March
1992.

[6] B. Porat and B. Friedlander, “Asymptotic accuracy of ARMA pa-
rameter estimation methods based on sample covariances,” Proc.7th
IFAC/IFORS Symposium on Identification and System Parameter Esti-
mation, York, 1985.

[7] P. Stoica, B. Friedlander and T. Söderström, “An Approximate maxi-
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