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ABSTRACT
In this work, we treat a design problem for recursive
digital filters described by rational transfer function in
discrete space with scaling and error feedback. First,
we form the filter design problem using the least-squares
criterion and express it as the quadratic form with re-
spect to the filter coefficients. Next, we show the relax-
ation method using the Lagrange multiplier method in
order to search for the good solution. Finally, we show
the effectiveness of the proposed method using some nu-
merical examples.

1. INTRODUCTION

Design problem of digital filter has been formulated in
the continuous space in many cases. However in the
implementation of hardware, the characteristic of the
digital filter may be changed due to the finite wordlength
of the filter coefficients, also the overflow can occur in
the adder of the filter. So we have pay attention to such
a finite wordlength effect and should reduce it.

The synthesis of low-sensitivity digital filter struc-
tures using coordinate transformation is an effective
method to reduce the degradation of filter performance
[1, 2, 3]. However this method can be only used when
the filter is described by the state-space model. So when
the filter is described by rational transfer function, we
can not use this method, and have to design the filter
coefficients in discrete space to avoid the performance
degradation. If we search the filter coefficients in dis-
crete space, it takes enormous time to find the best so-
lution. Hence, the design of digital filter with discrete
coefficients is really hard.

In this paper, we treat the problem of designing
the discrete coefficients, under the scaling constraint.
First, we form the filter design problem using the least-
squares criterion and express it as the quadratic form
with respect to the numerator and denominator coeffi-
cients. Next, we show the relaxation method using the
Lagrange multiplier method to search for the good solu-
tion. The designed filter is always stable and better than
simple roundoff technic. Also, another problem of the
finite wordlength implementation is the product round-
off noise. Error feedback(EF) is known as the effective
method to reduce the product roundoff noise[4, 6, 5].
So we also apply the branch and bound method to the
design problem of EF with discrete coefficients.

Finally, we give two numerical examples to design
the digital filters and EF with discrete coefficients un-
der scaling constraint and show the effectiveness of the
proposed method.

2. LEAST-SQUARES METHOD

First of all, we summarize the least-squares method pro-
posed in [7]. Let the desired transfer frequency response
be Hd(ω) in [0, π). The purpose of that work is to find
a rational transfer function

H(z) =
N(z)
D(z)

(1)

D(z) =1 + qt
1(z)a (2)

N(z) =qt
2(z)b (3)

where a = [a1 . . . an]t, b = [b0 b1 . . . bn]t, q1(z) =
[z−1 . . . z−n]t and q2(z) = [1 z−1 . . . z−n]t.

Using D(z), N(z) and Hd(ω), L2 weighted function
is defined by

E(a, b) =
1
2

∫ π

0

W (ω) | Hd(ω) − H(ejω) |2 dω. (4)

(4) can be written as

E(a, b) =
1
2

∫ π

0

W (ω)
|D(ejω)|2 | Hd(ω)D(ejω)

− N(ejω) |2 dω. (5)

In (5), |D(ejω)|2 underneath W (ω) can be calculated by
following function.

E(a(k), b(k)) =
1
2

∫ π

0

W (ω)
|Dk−1(ejω)|2 | Hd(ω)Dk(ejω)

− Nk(ejω) |2 dω (6)

where Dk(ejω) = 1 + qt
1(ω)a(k) and Nk(ejω) = qt

2(ω)bk

(k = 1, 2, · · · ). a(k) and b(k) are the coefficients vectors
to be determined in the kth iteration. Define

Wk(ω) =
W (ω)

|Dk−1(ejω)|2 (7)

then

E(a(k), b(k)) =
1
2

∫ π

0

Wk(ω) | Hd(ω)Dk(ejω)

− Nk(ejω) |2 dω. (8)

Hence a(k) and b(k) can be obtained by using a(k−1).
Also, (8) can be written in the quadratic form as

E(x(k)) =
1
2
x(k)t

Kx(k) + vtx(k) + c (9)
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where x(k) = [a(k) b(k)]t, c is a constant independent of
a(k) and b(k) and

K =
[

K11 −K12

−Kt
12 K22

]
(10)

K11 = �
L∑

i=1

Wk(ωi)|Hd(ωi)|2Q11(ωi) (11)

K22 = �
L∑

i=1

Wk(ωi)Q22(ωi) (12)

K12 = �
L∑

i=1

Wk(ωi)Q12(ωi) (13)

Q11(ω) =

⎡
⎢⎢⎣

1 cos(ω) . . .
cos(ω) 1 . . .

...
. . .

cos[(n − 1)ω] cos[(n − 2)ω] . . .

cos[(n − 1)ω]
cos[(n − 2)ω]

...
1

⎤
⎥⎥⎦ (14)

Q12(ω) =
1
2

[
Hd(ω)q1(ω)qt

2(ω) + Hd(ω)q1(ω)qt
2(ω)

]
(15)

Q22(ω) =

⎡
⎢⎢⎣

1 cos(ω) . . . cos(nω)
cos(ω)

... Q11(ω)
cos(nω)

⎤
⎥⎥⎦
(16)

v =
[

v1

−v2

]
(17)

v1 = �
L∑

i=1

Wk(ωi)|Hd(ωi)|2q̃1(ωi) (18)

v2 = �
l∑

i=1

Wk(ωi)q̃2(ωi) (19)

q̃1(ω) = [cos(ω), cos(2ω), . . . , cos(nω)]t (20)

q̃2(ω) =
1
2
[Hd(ω)q2(ω) + Hd(ω)q2(ω)]. (21)

� is the increment for numerical integral of (9). Here
Dk(ejω) must be stable and the stable solution can be
obtained to minimize (9) under the following constraint

Re[Dk(ejω)] > 0 ω ∈ [0, π] (22)

or

Re[Bx(k)] ≤ (1 − δ)e2n+1 (23)

where

B = −

⎡
⎢⎣

qt
1(e

jΩ1)
... 0

qt
1(e

jΩM )

⎤
⎥⎦

M×(2n+1)

e2n+1 =

⎡
⎣
1
...
1

⎤
⎦

M×1

(24)

a d d

a

a d

d d

a d a d

d d

a d d

a d d

d d

d d

d d
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Figure 1: Example of the tree structure where a0, a1 · · ·
are the filter coefficients, and d1, d2 · · · are their candi-
dates.

and δ is a positive small number. Hence the filter design
problem is expressed as

min E(x) (25)

subject to Re[Bx(k)] ≤ (1 − δ)e2n+1. (26)

Thus x (continuous values) can be obtained by calcu-
lating the iteration (25) under the constraint (26).

In this paper, we find the discrete coefficients which
minimize (9) under scaling constraint using K and v.

3. FINITE WORDLENGTH DESIGN

3.1 Lower bound estimation principle

Consider when the filter order is n = 12, and the word-
length of the sign, integer part and decimal part of the
coefficients are 1, 3 and 5 bits, respectively. Then each
coefficients can take 29 − 1 = 511 values. Hence the
number of combination for discrete coefficients is (29 −
1)(2n+1) = 51125 = 5.13 × 1067. So it seems very hard
to search all combination if using the tree structure as
shown in Fig.1.

The branch and bound method is based on the lower
bound estimation principle by the Lagrange multiplier
method and that can reduce the calculation costs effi-
ciently. The procedure is summarized as follows.

Assume the temporary solution xP is already ob-
tained. Let the discrete coefficients vector be x and
divide it into two sets as

x = {x1, x2} (27)

where x1 = (x1, · · ·xi) and x2 = (xi+1, · · ·x2n+1).
Hence xi indicates the tree with depth i.

Next, we write the relaxation solution of x2 as fol-
lows.

x′ = {x1, x
∗
2} (28)

Then if

E(xP ) ≤ E(x′) (29)
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holds, the set x2 in x1 which beats xP does not exit. So
then it is not necessary to search x2 in x1 and it leads
to reduction of search space.

3.2 Lagrange multiplier method

Relaxation means to calculate x∗
2 which minimizes (9)

with continuous values.
Define

xtS = xt
1 (30)

where

S =(s1, s2, . . . , si)

s1 =(1, 0, 0, . . . , 0)t

x1 =(x1, x2, . . . , xi)t.

(30) indicates some of coefficients are discrete. The
relaxation solution can be calculated by using the La-
grange multiplier method.

By applying the Lagrange multiplier method to the
problem that minimizes (9) under constraint (30), we
have

J(x, λ) =
1
2
xtKx + vtx + c − (xtS − xt

1)λ. (31)

Differentiating J(x, λ) with respect to x and λ, and
equating the resulting expression to zero yields

∂J(x, λ)
∂x

= Kx + v − Sλ = 0 (32)

∂J(x, λ)
∂λ

= −xtS + xt
1 = 0. (33)

From (32) and (33), we have

λ = (StK−1S)−1(x1 + StK−1v). (34)

Hence x can be obtained as

x = K−1(S(StK−1S)−1(x1 + StK−1v) − v). (35)

Thus we can get the relaxation solution by setting S ∈
{0,±1} and p. For example, S and x1 corresponding to
x1 = 1, x2 = 0.5 and x3 = 1.25 are as follows

S =

⎡
⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ (36)

x1 =(1, 0.5, 1.25)T . (37)

3.3 Branch and bound method

Let a tree of the filter coefficients be A, and define the
search function Pi = S(A) which divides A into sub-
trees Pi. In this paper, we use the depth-first search
algorithm as the search function S(A) as follows.

S(A) : We select the tree Pi that is located in the
deepest branch among the sets of sub-tree A. The di’s

µ

Figure 2: Recursive digital filter with the scaling coeffi-
cient s and error feedback where β1 and β2 are the EF
coefficients, and x(n), y(n) and e(n) are the filter input,
filter output, and product roundoff noise, respectively.

search priorities sp(di) are sp(d1) > sp(d2) · · · > sp(dm)
where d1 < d2 < · · · < dm.

The procedure of the branch and bound method
based on the lower bound estimation principle is sum-
marize as follows.

A: The set of sub-trees that have already been gen-
erated but not divided and finalized.

EP : The noise gain of the optimum solution.
O: The set of the optimum solution(s).

STEP 1: A = {P0}, EP = E(xP ) and O = {xO}.
STEP 2: A = φ? If yes, go to STEP 8. If not,

Pi = S(A) and go to STEP 3.

STEP 3: Are all coefficients discrete? If yes, go to
STEP 4. If not, calculate the relaxation solution by (35)
and go to STEP 5.

STEP 4: If there is the solutions x satisfying E(x) <
EP , then renew the temporary solution and go to STEP
7. If not, go to STEP 5.

STEP 5: E(x′) ≥ EP or E(x) ≥ EP ? If yes, go to
STEP 7, if not, go to STEP 6.

STEP 6: Generate the j sub-trees under Pi as
Pi1, Pi2, · · ·Pij . A = A ∪ {Pi1, Pi2, · · ·Pij} − {Pi}
and go to STEP 2.

STEP 7: A = A − {Pi} and go to STEP 2.

STEP 8: End

3.4 Scaling

Scaling is a technic to prevent the overflow using the
scaling coefficient. Fig. 2 shows the proposed structure.
Here the scaling coefficient µ is selected to prevent the
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2B bits dataB bits data

B bits coefficient

Figure 3: Product of B bits data and B bits coefficient.

overflow at the adder. Let the impluse response from the
filter input to the adder be f(ξ), we decide the scaling
coefficient µ by using L2-norm [8] as

µ =

⎧⎪⎨
⎪⎩

1⎡
⎣ ∞∑

ξ=0

f2(ξ)

⎤
⎦

1
2

⎫⎪⎬
⎪⎭

k−bits

(38)

where µ is k bit word-length. In general, the filter coeffi-
cients bi must be modified to bi/µ, then the word-length
of the multiplication results of bi and 1/µ may be longer
than that of original bi. In this paper, we propose the
new method to get the finite word-length coefficients un-
der scaling constraint. First we design the finite word-
length coefficients and the scaling coefficients (k-bits) by
using the designed coefficients and (38). Next, we mod-
ify the desired frequency response and to search for the
filter coefficients based on the lower bound estimation
method. The algorithm is summarized as follows

STEP 1: Calculate K and v by using (9).
STEP 2: Design the finite wordlength coefficients

based on the lower bound estimation method.
STEP 3: Calculate the scaling coefficient and round

it to k-bits.
STEP 4: Modify the desired frequency response as

H ′
d(ω) = 1

µHd(ω).
STEP 5: Recalculate the filter coefficient with de-

sired response H ′
d(ω).

4. ERROR FEEDBACK

As shown in Fig. 3, the product of B bits data and B
bits coefficient becomes the 2B bits result and that must
be rounded back to B bit. Then the product round-
off noise is generated. With EF network [4] as shown
in Fig.2, the product roundoff noise can be canceled.
Note that the frequency responses of the filters are never
changed by the EF. According to [4], the formulation of
EF is summarized as follows.

The transfer function of the EF is given by

B(z) =
N∑

k=0

βkz−k (39)

where β0 = 1 and N ≤ n. Then the transfer function
from the error source to the filter output is

He(z) = B(z)G(z) (40)

where G(z) = 1/D(z) in Direct form I and G(z) =
N(z)/D(z) in Direct form II, respectively.

The gain of the roundoff noise can be expressed as

I =
1

2πj

∮
He(z)He(z−1)z−1dz (41)

or

I =
1
π

∫ π

0

|B(ejω)|2|G(ejω)|2dω. (42)

Note that I is the normalized noise gain. The general
noise gain is σ2

out = I × 2−2B/12 where B indicates the
wordlength of the filter. For convenience, let us denote

Q(ω) = |G(ejω)|2 (43)

and let the autocorrelation coefficients of the error signal
be

qk =
1
π

∫ π

0

cos kωQ(ω)dω

=
∞∑

ς=0

g(ς)g(k + ς) (44)

where g(ς) is the impulse response corresponding to
G(z). Since qk is symmetric (q−k = qk), (42) can be
expressed as

I(w) = wT Rw (45)

where

w = (β0 β1 · · · βN )T (46)

R =

⎛
⎜⎜⎝

q0 q1 · · · qN

q1 q0 · · · qN−1

...
...

. . .
...

qN qN−1 · · · q0

⎞
⎟⎟⎠ . (47)

As in the section 3.1, the vector minimizing (45) under
constraint wtS = wt

1 is obtained by [5]

w = R−1S(ST R−1S)−1w1. (48)

From (48), we can calculate the relaxation solution as
well as (35). As the same procedure of the filter design,
we can find the discrete EF coefficients by the lower
bound estimation method.

5. EXAMPLES

We design the following low-pass filter and high-pass
filters with the filter order n = 12.

Low-pass filter:

Hd(ω) =
{

e−j12ω ω ≤ 0.525π
0 ω > 0.525π

(49)

High-pass filter:

Hd(ω) =
{

e−j12ω ω ≥ 0.525π
0 ω < 0.525π

(50)

Let the word-length of the sign, integer part and decimal
part of the coefficients be 1, 3 and 5 bits, respectively.
We use the simple rounded coefficients as a first tempo-
rary solution.

Because the calculation cost is required to search all
candidates of each filter coefficients, the search range is
selected within ±1 of each continuous coefficients.
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Figure 4: Low-pass filter.

Figs. 4 and 5 show the results where the scaling co-
efficients are s = 0.15625 and s = 0.12500, respectively.
The computation times are 9.09× 104 [s] and 2.71× 105

[s], respectively, when using a computer with 1.83 GHz
CPU and 512 MB memory. In Figs. 4 and 5, the solid
line indicates the frequency response by the proposed
method, and the dotted and chained lines are the case
of the simple rounded coefficients designed by the iter-
ation of (25) under the constraint (26), and the results
calculated by ’yulewalk’ function of MATLAB1, respec-
tively. Note that all poles of the filters designed by the
proposed method are inside the unit circle, thus the de-
signed filters are both stable. From Figs. 4 and 5, we
can see the proposed method beats the other methods
which have the simple rounded coefficients.

Next let us consider the product roundoff noise. The
gains of the product roundoff noise without the EF are
30.3552 (Low-pass filter) and 22.2271 (High-pass filter),
respectively. We add the 6th order EF network to the
designed filters. With the EF, the noise gains are 0.5745
and 0.9949 where the word-length of the sign, integer
part and decimal part of the EF coefficients are 1, 4 and
3 bits, respectively. Unlike the case of filter design, we
search all candidates of each EF coefficients. It follows
that the optimality of the discrete EF can be guaran-
teed.

6. CONCLUSION

In this work, we have proposed the design method for re-
cursive digital filters with finite wordlength coefficients
under scaling constraint to avoid the coefficients quanti-
zation noise. We search the good solution by using the
branch and bound method based on the lower bound es-
timation principle. Additionally, with the lower bound
estimation method, we can also design the EF with dis-
crete coefficients for reduction of the product roundoff
noise. It follows that we can reduce the product round-
off noise as well as the coefficients quantization noise
without overflow. Finally, we have confirmed the ef-
fectiveness of the proposed method using the numerical

1MATLABr is registered trademark of The MathWorks, Inc.
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Figure 5: High-pass filter.

examples.
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