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Abstract— Multiplierless filtering is very attractive for digital signal
processing, for the coefficient multiplier is the most complex and the
slowest component. An alternative way to achieve multiplierless filtering
other than designing digital filters with signed power-of-two (SPT)
coefficient values is to round each input data to a sum of a limited number
of SPT terms. However, a roundoff noise representing the roundoff error
is introduced when signal data are rounded to SPT numbers. In the SPT
space, the quantization step size is nonuniform and thus the roundoff
noise characteristic is different from that produced when the quantization
step size is uniform. This paper presents an analysis for the roundoff noise
of signal represented using a limited number of SPT terms. Roundoff
errors for Gaussian distributed inputs are estimated by using our analysis.
Examples show that the estimated errors are very close to the actual ones.

I. INTRODUCTION

It is a well known fact that the multiplication of a number by an
integer power-of-two is a very simple process in binary arithmetic.
Hence, digital filters whose coefficient values are integer power-
of-two are essentially multiplierless. However, the design of digital
filters with signed power-of-two (SPT) coefficient values require time
consuming optimization process and may not always be possible
in some applications such as in adaptive filtering. Since hardware
circuitry for real time conversion of a binary integer into a limited
number of SPT is available [1], if the signal is expressed in SPT
terms, i.e., in digit code, the filter is also multiplierless even though
the coefficient values are not SPT.

When each signal data is rounded to a limited number of SPT
terms, a roundoff noise representing the roundoff error is introduced.
In the SPT space, the quantization step size is nonuniform [2] and
thus the roundoff noise characteristic is different from that produced
when the quantization step size is uniform. Whereas the finite
wordlength roundoff error is most frequently statistically modeled as
an additive, uniformly distributed white noise [3], the understanding
on the statistics of SPT roundoff error, so far, is very limited.
Some statistical analysis on the SPT number had been reported in
[2], [4]. Lim et al [2] investigated the relationships between SPT
terms and the number they represent. These relationships lead to a
statistical measure on the number of SPT terms required to represent
an integer. Yao [4] derived the distribution of the SPT terms, i.e.,
the probability of allocating an SPT term to a particular digit.
Bussgang [5] investigated the autocorrelation and crosscorrelation
functions of Gaussian signal after they undergo nonlinear amplitude
distortion. However, there is no report on the statistical distribution
of SPT quantization error for the rounding procedure.

The purpose of this paper is to present an analysis for the
roundoff noise of signal represented using a limited number SPT
terms. Section II reviews some properties of SPT numbers; these
properties will be used in the subsequent derivations. In Section III,
an SPT roundoff error model is established for a given distributed
input. Mathematical expressions on the error’s probability density
function are established subject to a given precision, and the statistical
properties of the roundoff error are studied. Based on this SPT

roundoff error model, in Section IV, the roundoff error for Gaussian
distributed inputs is approximated.

II. SIGNED POWER-OF-TWO NUMBERS

A number n can be represented to a precision 2Q by an (L−Q)-
digit canonic SPT number with K SPT terms as

n =

K−1∑
i=0

y(i)2q(i), y(i) ∈ {−1, 1}, (1)

where Q ≤ q(i) ≤ L − 1. L − Q is the wordlength of the SPT
number being a positive integer but Q may be zero, a positive integer,
or a negative integer. Furthermore, for any i and j, it satisfies the
constraints that q(i) 6= q(j) if i 6= j and that q(i) 6= q(j) + 1.

For the particular condition in (1) where Q = 0, n is an L-digit
integer. In this section, this particular case for quantizing a number
to an SPT number where Q = 0 is considered.

Let Z denote the set of all integers and Z+ denote the set of
all positive integers. Let L, K ∈ Z+. Since q(i) 6= q(j) + 1, it is
obvious that an L-digit canonic SPT integer has at most

⌊
L+1

2

⌋
SPT

terms (or non-zero digits), where bxc is the largest integer smaller
than or equal to x. Assume further that L ≥ 2K− 1. Let T+(L, K)
be a subset of Z+ such that any n ∈ T+(L, K) is a sum of exactly
K canonic SPT terms and the largest power-of-two term is less than
or equal to 2L−1, where n is given by (1) in which Q is equal to 0.

It is known that the number of elements of the set T+(L, K),
represented as N+(L, K), is [2]

N+(L, K) =
2K−1

K!

K−1∏
k=0

(L−K + 1− k). (2)

In (2), K! denotes the factorial of K.
Let S+(L, K) be a subset of Z+ such that S+(L, K) =⋃K

k=1
T+(L, k), i.e., any n ∈ S+(L, K) is a sum of not more than

K canonic SPT terms and the largest power-of-two term is less than
or equal to 2L−1. It is noted that S+(L, K) does not include zero.

Let M+(L, K) be the number of elements of the set S+(L, K).
It is straightforward to show that

M+(L, K) =

K∑
k=1

N+(L, k). (3)

Therefore, the number of elements of S+
(
L,

⌊
L+1

2

⌋)
is

M+
(
L,

⌊
L+1

2

⌋)
. Denote M+

(
L,

⌊
L+1

2

⌋)
as M+

L , we have

M+
L =

⌊
2L+1

3

⌋
. (4)

M+
L is also the largest number which can be represented by a canonic

SPT interger where the largest power-of-two term is less than or equal
to 2L−1.
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Fig. 1. Input-output characteristics of an SPT roundoff quantizer with K = 1,
∆ = 2Q = 20.

Let

M+
L∞ =

∞∑
k=0

2L−1−2k =
2L+1

3
. (5)

M+
L∞ is the largest infinite precision number represented by SPT

terms with the largest power-of-two term being less than or equal to
2L−1.

Furthermore, let S(L, K) be the union of S+(L, K), −S+(L, K)
and the element 0, i.e., S(L, K) is the integer set that can be
represented by L-bit SPT integer with not more than K SPT terms,
including both the positive and negative numbers as well as the
zero element. Obviously, the number of elements in S(L, K) is
2M+(L, K) + 1.

III. STATISTICS OF THE SPT ROUNDOFF ERROR

An SPT roundoff quantizer (to quantize a real number to a sum of
K SPT terms, with a precision of 2Q) is a device having a staircase
type input-output relation, as shown in Fig. 1, with a countable
number of quantization levels. At each instant, the output of the
quantizer can be determined precisely in terms of its input. However,
if the input is random, the statistical behavior of the output, rather
than this point-by-point response, is of interest. Hence a statistical
model is sought to represent the quantization error.

We consider the input to the quantizer as a random variable
x(i), i ∈ Z and assume that x(i) is uniformly distributed in
[−M+

L∞, M+
L∞], where [a, b] denotes all the infinite precision num-

bers in the range bounded by a and b inclusive, as shown in Fig. 2.
Denoted as U(−M+

L∞, M+
L∞), the probability density function of

the random variable x(i) is given by

p(x) =

{ 1

2M+
L∞

, −M+
L∞ ≤ x ≤ M+

L∞,

0, otherwise.
(6)

The reason for making the above assumption is that the error
incurred in a number x(i) to be quantized to SPT form is related
to the magnitude of the number. Larger magnitude number may have
larger error for a given K. Therefore, the distribution of x(i) affects
the distribution of the rounding error.

At each sampling instant i, the quantized output xq(i), the
quantization error e(i), and the input x(i) are related by

e(i) = x(i)− xq(i) for all i ∈ Z+, (7)

where

x(i), e(i) ∈ R,

xq(i) ∈ S(L, K, Q). (8)

In (8), R is the set of real number, and S(L, K, Q) is the set of SPT
number; the element of the set S(L, K, Q) has not more than K SPT
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Fig. 2. PDF for a uniformly distributed random number x, x ∈ {x| −
M+

L∞ ≤ x ≤ M+
L∞, x ∈ R}.

terms, and the allowed largest and smallest power of two terms are
2L−1 and 2Q, respectively.

For notational convenience, we drop the index i and represent the
quantization error model (7) as

e = x− xq. (9)

Let x̄ be the integer nearest to x.
In this section, we give out 2 properties without proof.
Property 1: The error PDF for rounding a random value x with

PDF of U(−M+
L∞, M+

L∞) to an element in S(L, K, Q), when L−
Q ≥ 2K is given by:

pL,K,Q(e)

=





2M+(L−Q, K) + 1

2M+
L∞

, for e ∈ [−2Q−1, 2Q−1],

4M+(L−Q−1−k,K)−2M+(L−Q−k,K)+1

2M+
L∞

,

for e ∈ ±[2Q+k−1, 2Q+k],
k = 0, · · · , L−Q− 2K − 1,

1

2M+
L∞

, for e ∈ ±
[
2L−2K−1,

2L−2K+1

3

]

when L−Q− 2K − 1 ≥ 0,

0, otherwise.

(10)

2

An example of the error PDF for rounding an infinite precision
number to an element in S(0, 2,−8) is shown in Fig.3.

We shorthand the above random distribution of the SPT roundoff
error as Eu(L, K, Q).

Property 2: The mean of the error caused by rounding a random
value x with PDF of U(−M+

L∞, M+
L∞) to an element in S(L, K, Q),

E(e), is equal to 0. The variance of the error, σ2
L,K,Q(e), is given

by (11).

σ2
L,K,Q(e) =





22Q

12
· 27M+

L−Q + 32

27M+
L−Q + 18

, for L−Q = 2K,

23Q

2M+
L∞

[(
7

3
M+

2K +
128

81

)
23(L−Q−2K−1)

−
L−Q−2K−2∑

k=0

7M+(L−Q−1−k, K)23k

−M+(L−Q,K)

]
, for L−Q ≥ 2K + 1.

(11)
2

Several values of σL,K,Q(e) for L ranges from 4 to −2 and K
ranges from 2 to 6, corresponding to Q = −10 are listed in Table I. In
Table I, each row of values corresponds to the range

[
− 2L+1

3
, 2L+1

3

]
.

It can be seen from Table I that the variance decreases with increasing
K for a given L and decreases with decreasing L for a given K.
Therefore, to achieve approximately the same variance, say 10−3,
when rounding a number to an SPT value, larger L requires larger
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Fig. 3. The error PDF for rounding a number to an SPT number with K SPT
terms, and with the allowed largest and smallest power-of-two terms 2L−1

and 2Q, where L = 0, Q = −8 and K=2.

TABLE I
VALUES OF σL,K,Q FOR Q = −10.

K 2 3 4 5 6
L
4 1.9646E−1 3.6496E−2 6.8449E−3 1.3019E−3 3.4860E−4
3 9.8229E−2 1.8248E−2 3.4244E−3 6.7739E−4 2.9171E−4
2 4.9115E−2 9.1242E−3 1.7178E−3 3.9782E−4 2.8194E−4
1 2.4557E−2 4.5629E−3 8.7432E−4 3.0129E−4 −
0 1.2279E−2 2.2839E−3 4.7644E−4 2.8202E−4 −
−1 6.1396E−3 1.1497E−3 3.1988E−4 − −
−2 3.0707E−3 5.9718E−4 2.8234E−4 − −

K, i.e., more SPT terms. When L = 4, five SPT terms are required,
whereas for L = −1, three SPT terms are required. Interestingly,
increasing the value of L from −1 to 4 corresponds to an increase
in 5 digits in the SPT number but it is only necessary to increase
the non-zero digit by 2 digits (i.e., increasing from 3 SPT terms to
5 SPT terms) in order to maintain the same roundoff noise power.

IV. QUANTIZATION OF GAUSSIAN SIGNALS

Gaussian processes are an important class of input models to the
quantizer in many practical applications. We study the statistical
properties of the quantization error for Gaussian inputs in this section.

A. Approximation of Gaussian Distribution

Consider the input x to be a Gaussian random variable with zero
mean and standard deviation σ, denoted as N (0, σ2). Let the PDF
of the input be

p(x) =
1√
2πσ

exp(−x2/(2σ2)). (12)

This Gaussian input could be approximated as a weighted super-
position of several uniform distributions as

N (0, σ2) ∼
L−2⋃
l=L

kl × 2M+
l∞U(−M+

l∞, M+
l∞), (13)

where k × (b − a)U(a, b) is a weighted uniform distribution with
PDF defined as

p(x) =

{
k × (b− a)

1

b− a
0

=

{
k, a ≤ x ≤ b,

0, otherwise.
(14)

Therefore, the Gaussian PDF is approximated as a piece-wise
constant function given by

p(x) '





kL, for x ∈ ±
[
M+

L∞, M+
(L−1)∞

]
,

kL + kL−1, for x ∈ ±
[
M+

(L−1)∞, M+
(L−2)∞

]
,

kL + kL−1 + kL−2, for x ∈ ±
[
M+

(L−2)∞, 0
]
,

0, otherwise.
(15)
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Fig. 4. A Gaussian inputN (0, 0.32) is approximated by a piecewise constant
distribution.

where
L = log2(12σ)− 1, (16)

and

kL =

Φ

(
−M+

(L−1)∞
σ

)

M+
(L−1)∞

, (17)

kL−1 =

Φ

(
−M+

(L−2)∞
σ

)
−Φ

(
−M+

(L−1)∞
σ

)

M+
(L−2)∞

−kL, (18)

kL−2 =

Φ(0)− Φ

(
−M+

(L−2)∞
σ

)

M+
(L−2)∞

− kL − kL−1. (19)

Equation (16) is obtained from (5) by supposing that the maximum
absolute value of the random variable x is 4σ, and • is the integer
nearest to •. In (17) − (19), Φ(x) is the Cumulative Distribution
Function of Gaussian distribution given by [6]

Φ(x) =

{
0.5(1 + erf (x/

√
2)) x ≥ 0,

0.5(1− erf (|x|/
√

2)) x < 0,
(20)

where, erf (x) is the error function given by

erf (x) =
2√
π

∫ x

0

e−t2dt. (21)

For example, an input with N (0, 0.32) can be approximated as
a piece-wise constant function as given in (15) and as shown in
Fig. 4, where L = 1, kL = 0.01970, kL−1 = 0.34068 and kL−2 =
0.73984. Our results show that, as far as round off error analysis
is concerned, approximating the Gaussian PDF function by the
piecewise constant model of (15) produces insignificant difference. In
order to facilitate theoretical analysis of roundoff noise, in this paper,
the PDF of a signal will be approximated by a suitable piecewise
constant model.

B. Approximation of Gaussian Input Quantization Error Distribution

In this paper, when rounding the input x with N (0, σ2) dis-
tribution, the error analysis is done by approximating it to the
error analysis of rounding an input with distribution given in (15).
Therefore, the distribution of quantization error (by quantizing the
Gaussian input N (0, σ2) to SPT number with not more than K
SPT terms and with the smallest power-of-two term not smaller
than 2Q), shorthanded as En(σ2, K, Q), can be approximated as the
weighted superposition of error distributions corresponding to each
of the weighted piecewise constant input distribution, i.e.,

En(σ2, K, Q) ∼
L−2⋃
l=L

kl × 2M+
l∞Eu(L, K, Q). (22)
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Fig. 5. The distribution of quantization error due to rounding a Gaussian
input N (0, 0.32) to SPT numbers with K = 2 and Q = −10: the solid
plots correspond to the piece-wise constant approximated result whereas the
histogram plots correspond to the actual measured distribution.

TABLE II
ACTUAL QUANTIZATION ERROR VARIANCES OF 8 SETS OF

RANDOM SEQUENCES WITH N (0, 0.32) AND THEIR PIECE-WISE

CONSTANT ESTIMATIONS.

No. Variance No. Variance No. Variance No. Variance
1 1.2644E−4 3 1.2280E−4 5 1.2212E−4 7 1.2421E−4
2 1.2562E−4 4 1.2612E−4 6 1.2556E−4 8 1.2316E−4

Average: 1.2450E−4
Piece-wise constant estimation: 1.1876E−4
Relative estimation error: −4.6%

With the above approximation, the error PDF is approximated as

pσ,K,Q(e) '
L−2∑
l=L

kl × 2M+
l∞pl,K,Q(e), (23)

where, L is given by (16), kl is given by (17)−(19), and pl,K,Q(e)
is given by (10). Correspondingly, the variance of the quantization
error is approximated as

σ2
σ2,K,Q(e) '

L−2∑
l=L

kl × 2M+
l∞σ2

l,K,Q(e), (24)

where, σl,K,Q(e) is given by (11). The mean value of the Gaussian
quantization error remains zero because of the symmetry of the
distribution.

C. Examples

The first example illustrates the estimation of the quantization error
by rounding x with N (0, 0.32) to SPT numbers with K = 2 (i.e.
two SPT terms) and Q = −12 (i.e. the smallest SPT term is 2−12).
The estimation error distribution approximated by (22), as well as
the histogram of the quantization errors of a sequence of random
numbers and with N (0, 0.32) are plotted in Fig. 5. The sample size
of the sequence is 50,000. In the sequel, the same sample size is used
for the example sequences. The estimated error variance computed by
(24) is 1.1876× 10−4, and the actual error variance for the random
sequence is 1.2644×10−4. The error variance together with those of
other 7 sets of random sequences are listed in Table. II. The relative
estimation error in Table. II is defined as

Estimated value− Average value
Average value

. (25)

The second example illustrates the estimation of the quantization
errors by rounding Gaussian inputs with σ = 0.2, 0.5 and 0.8,
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Fig. 6. Relative estimation errors of quantization error variances for rounding
Gaussian inputs N (0, 0.22), N (0, 0.52), and N (0, 0.82), respectively, for
Q ranging from −4 to −12 and K ranging from 1 to 6.

respectively, to SPT numbers with various K and Q. The relative
estimation errors between the estimated error variances and the
average actual error variance over 8 trials are plotted in Fig. 6.

As can be seen from Fig. 6, the absolute value of relative estimation
error is less than 15% for all cases. For most cases, the relative
estimation errors drift from positive values to negative values, and
eventually regress to the vicinity of zero when K increases. This
is because when K is larger than half of the wordlength, the SPT
roundoff is the same as the uniformly distributed fix-point roundoff.

V. CONCLUSION

In this paper, the error distribution for quantizing infinite precision
signals to SPT values for a given L, K, Q is deduced, where K
is the number of SPT terms, 2L−1 and 2Q are the allowed largest
and smallest power-of-two terms, respectively, given the input signals
are uniformly distribute in [−M+

L∞, M+
L∞]. The roundoff errors

for Gaussian distributed signals are obtained by approximating the
signals as a weighted superposition of several uniformly distributed
signals. Simulation results show that such piece-wise constant model
faithfully represents the Gaussian model in roundoff error variance
analysis producing a maximum relative estimation error of less than
15%. This translates to 10 ∗ log10(1.15) = 0.61dB in error power.
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