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ABSTRACT

This paper describes a novel extension to warped minimum
variance distortionless response (MVDR) spectral estima-
tion which allows to steer the resolution of the spectral en-
velope estimation to lower or higher frequencies while keep-
ing the overall resolution of the estimate and the frequency
axis fixed. This effect can be achieved by the introduction
of a second bilinear transformation to the warped-MVDR
spectral estimation, but now in the frequency domain as op-
posed to the first bilinear transformation which is applied in
the time domain, and a compensation step to adjust for the
pre-emphasis of both bilinear transformations. In the feature
extraction process of an automatic speech recognition sys-
tem this novel extension allows to emphasize classification
relevant characteristics while dropping classification irrele-
vant characteristics of speech features according to the char-
acteristics of the signal to analyze, e.g. vowels and fricatives
have different characteristics and therefore should be treated
differently. We have compared the novel extension on eva-
luation data of the Rich Transcription 2005 Spring Meeting
Recognition Evaluation to warped-MVDR and got an word
error rate reduction from 28.2% to 27.5%.

1. INTRODUCTION

To improve phoneme classification it is important to empha-
size the relevant characteristics while dropping the irrelevant
characteristics for classification. In the traditional feature
extraction process of an automatic speech recognition sys-
tem this is achieved by successive implementations (e.g, a
spectral envelope or/and a filterbank followed by cepstral
transformation, cepstral normalization and linear discrimi-
nant analysis) treating all phoneme types equally. As for dif-
ferent phoneme types the important regions on the frequency
axis vary [1], e.g. low frequencies for vowels and high fre-
quencies for fricatives, it is a natural extension to the tradi-
tional approach to vary the spectral resolution depending on
the phoneme to calculate an acoustic score for. To provide
a framework to allow for these adjustments we propose an
extension to the warped minimum variance distortionless re-
sponse (MVDR) by a second bilinear-transformation. This
novel spectral envelope estimate has two ways of freedom to
control spectral resolution. The first is the number of linear
prediction coefficients also referred to as model order. E.g.
increasing the model order for the underlying linear parame-
tric model is also increasing the overall spectral resolution
and vise versa. The second, novel way of freedom, is a com-
pensated warp factor which allows to steer spectral resolu-
tion to lower or higher frequency regions without changing
the frequency axis.

2. WARPED-TWICE MVDR SPECTRAL
ENVELOPE ESTIMATION

The use of MVDR as a spectral envelope technique was pre-
viously proposed by Murthi and Rao [2, 3] and applied to
speech recognition by Dharanipragada and Rao [4]. More-
over, to ensure that more parameters in the spectral model
are allocated to the low, as opposed to the high, frequency
regions of the spectrum, thereby mimicking the frequency
resolution of the human auditory system, we have extended
this approach by warping the frequency axis with the bilinear
transformation prior to MVDR spectral estimation [5, 6],
therefore dubbed warped MVDR. Like Nakatoh et al. [7]
on the linear prediction coefficients (LPC)s, we can further
extend the MVDR approach by a second warping, yet in
the frequency domain rather than in the time domain as the
first warping, dubbed warped-twice MVDR (W2MVDR). By
compensating for the first warp with the second it allows to
steer spectral resolution to lower or higher frequencies with-
out changing the frequency axis.

The influence of the model order, the warping and the
compensated warping, leaving the warped frequency fixed to
the Mel-frequency, is more apparent if we depict an exam-
ple. While the model order varies the overall resolution of
the spectral estimate, see Figure 2a, the warp factor is bend-
ing the frequency axis and therefore can be used to apply
the Mel-frequency or to implement vocal tract length nor-
malization (not used in our experiments as the traditional ap-
proach of piece-wise linear warping is leading to better re-
sults), shown in Figure 2b. Even though the bending of the
frequency axis can be applied in the time or frequency do-
main the effect on the spectral resolution differs. Applying
the bilinear transformation in the time domain moves more
coefficients to lower or higher frequencies before spectral
analysis and therefore resulting in an increase or decrease
of resolution in lower or higher frequency regions. E.g.
let the first warp factor be a value smaller than the Mel-
frequency α < αMel, than spectral resolution improves in
high frequency regions and decreases in low frequency re-
gions in comparison to the spectral resolution provided by
Mel-frequency. The bilinear transformation applied on the
frequency axis, on the other hand, is ’only’ bending the al-
ready determined spectrum and therefore the spectral reso-
lution is not changed. A new aspect comes into play if the
second warp factor is set to compensate for the first warping
with the goal to match a particular fixed, warped frequency
axis, like the Mel-frequency. In this case the resolution can
be moved to low or high frequency regions without changing
the frequency axis, see Figure 2c.
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2.1 Fast Computation
For a fast computation of the W2MVDR envelope we have
extended Musicus’ [8] algorithm to calculate the MVDR en-
velope of model order N from the LPC a(N)

0···N of model order
N as follows:
1. Computation of the warped autocorrelation

coefficients R̃0···N+1
To derive warped autocorrelation coefficients, the linear
frequency axis ω has to be transformed to a warped fre-
quency axis ω̃ by replacing the unit delay element z−1

with a bilinear transformation

z =
z−1−α

1−α · z−1 (1)

Therefore we can derive the warped autocorrelation co-
efficients by

R̃[m] =
∞

∑
n=0

x̃[n]x̃[n−m] (2)

where the frequency-warped speech signal x̃ is defined
by

X̃(z̃) =
∞

∑
n=0

x̃[n]z̃−n =
N−1

∑
n=0

x[n]z−n (3)

Due to the effect that a bilinear transformed finite se-
quence results in an infinite sequence, the direct calcula-
tion of warped autocorrelation coefficients is not feasible.
To overcome this problem a variety of solutions exists. In
our experiments we have used the algorithm proposed by
Matsumoto and Moroto [9].
Note that we have to calculate N + 1 coefficients as we
need the additional coefficient in the compensation step.

2. Calculation of the compensation warp parameter
To fit the final frequency axis to the Mel-frequency αMel
we have to compensate the first warp α by a second warp:

β =
α −αMel

1−α ·αMel
(4)

For a signal sampled at 16 kHz αMel has to be 0.4595.
3. Compensation of the pre-emphasis

To derive the distortion introduced by the concatenated
bilinear transformations with warp values α and β we
calculate the phase delay by a frequency derivative of one
bilinear transformation (1) with the warp value

χ =
α +β

1+α ·β

and express the result in the weighting function:

∣∣W̃ (z̃)
∣∣2 =

1−χ2

(1+ χ · z̃−1)2 (5)

This is a pre-emphasis filter causing the spectrum at the
output to be not perfectly flat. To compensate for this
unwanted effect, to get a flat spectrum, we have to apply
the inverted weighting function

∣∣W̃ (z̃) ·W̃ (z̃−1)
∣∣−1

=
1+ χ2 + χ · z̃−1 + χ · z̃

1−χ2

to the warped autocorrelation coefficients r̃. This can be
realized as a second order finite impulse response filter:

R̂[i] =
1+ χ2 + χ · R̃[i−1]+ χ · R̃[i+1]

1−χ2 (6)

where R̃[−1] = R̃[1].
The effect of the pre-emphasis of the bilinear-
transformations and its complete compensation are de-
picted in Figure 1.

4. Computation of the warped-LPCs â(N)
0···N

The warped-LPCs can now be estimated by the Levinson-
Durbin recursion [10] replacing the linear autocorrelation
coefficients R with their warped and pre-emphasis com-
pensated counterparts R̂.

5. Correlation of the warped-LPC

µ̂k =

 ∑
N−k
i=0 (N +1− k−2i)â(N)

i â∗(N)
i+k

: k = 0, · · · ,N
µ̂∗
−k : k =−N, · · · ,−1

6. Computation of the W2MVDR envelope

SW2MVDR(ω) =
ε

∑
N
k=−N µ̂k

e jω−β

1−β ·e jω

(7)

ε: inverse of the prediction error variance.

Note that (7) is already in the Mel-warped fre-
quency domain and therefore we have to replace the
Mel-filterbank in the front-end of a speech recognition
system by a filterbank of uniformly half overlapping
triangular filters.

7. Scaling of the W2MVDR envelope
With the relation log(a + b) ≈ log(max{a,b}) we can
conclude that spectral peaks are particular robust to ad-
ditive noise in the logarithmic domain. Therefore, to
get features which are less distorted by additive noise
we match the W2MVDR envelope to the highest spec-
tral peak of the Fourier spectrum [6].

0 842 6
Frequency (kHz)

751 3

Figure 1: The gray line — the reference — is showing
an envelope with model order 30 and warp factor 0.4595.
The black lines are spectral envelopes with a warp factor of
0.6595 and same model order as before. The pre-emphasis
is not compensated at the dotted line while on the solid line
it is. It is clear to see that the solid line is following the am-
plitude of the gray line while the dotted line is emphasizing
high frequencies.
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Figure 2: The arrows are showing the influence of the free parameters of the warped-twice minimum variance distortionless
response spectral envelope pointing in the direction of higher resolution. The black line is showing an envelope with model
order 60 and warp factor 0.4595. Its counterparts with lower and higher (a) model order, (b) warp factor and (c) compensated
warp factor are given by pointed lines.

3. STEERING FUNCTION

As we wish to adapt our spectral envelope estimate by the
free parameters of the W2MVDR envelope, we have to find
a steering function in such a way that classification relevant
characteristics are emphasized while less relevant informa-
tion is suppressed. One promising approach to steer the spec-
tral resolution to lower or higher frequencies was suggested
in the work by Nakatoh et al. [7]. There, for every frame
indexed i, a division of the first R[1] by the zero R[0] autocor-
relation coefficient was used

0 ≤ ϕi =
∣∣∣∣Ri[1]
Ri[0]

∣∣∣∣≤ 1 (8)

In combination with γ to adjust the sensibility to the nor-
malized autocorrelation coefficient and the subtraction of the
bias to keep the average of α close to αMel we can write

αi = γ · (ϕi−0.5)+αMel (9)

which is a slight modification to the original proposal by
Nakatoh et al. For our experiments we kept γ fix at 0.1. A
different value might lead to slightly different results.

4. SPEECH RECOGNITION EXPERIMENTS

In order to evaluate the performance of the proposed
W2MVDR spectral estimation in combination with the steer-
ing factor we ran experiments on evaluation data of the
Rich Transcription 2005 Spring Meeting Recognition Evalu-

ation [11] consisting of five seminars/speakers, collected un-
der the Computers in the Human Interaction Loop (CHIL)
project[12], providing a total of approximately 130 minutes,
sampled at 16 kHz, of continuous, native and non-native,
speech material with 16.395 words.

As a speech recognition engine we have used the Janus
Recognition Toolkit (JRTk), which is developed and main-
tained by the Interactive Systems Laboratories at two sites:
Universität Karlsruhe (TH), Germany and Carnegie Mellon
University, USA. Relatively little supervised in domain data
is available for acoustic modeling of the recordings. There-
fore, we decided to train the acoustic model on the close
talking channel of meeting corpora and merge it with the
Translanguage English Database (TED) corpus [13] sum-
ming up to a total of approximately 100 hours of training
material. The acoustic model after merge and split training
consisted of approximately 3.500 context dependent code-
books with up to 64 Gaussians with diagonal covariances
each, summing up to a total of 180.000 Gaussians.

The front-end provided features every 10 ms (first and
second pass) or 8 ms (third pass) obtained by the Fourier
transformation, warped-LP, warped-twice LP (W2LP) – no
particular name is given for the adaptive LP analysis in the
work by Nakatoh –,warped-MVDR or W2MVDR spectral
estimation followed by a Mel-filterbank (Fourier transfor-
mation), no filterbank (warped-LP and W2LP) or a linear-
filterbank (warped-MVDR and W2MVDR) and a discrete
cosine transformation. Thereafter the 13 cepstral coefficients
were mean and variance normalized and after taking 7 adja-
cent frames the dimension has been reduced to 42 by linear
discriminant analysis.
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To train a 4-gram language model we have used cor-
pora consisting of broadcast news, proceedings of confer-
ences such as ICSLP, Eurospeech, ICASSP, ACL and ASRU
and talks by TED. The vocabulary contains approximately
23,000 words, the perplexity is 120 with an out of vocabu-
lary rate of 0.25%.

The word error rates (WER)s of our speech recognition
experiments are shown in Table 1 for different spectral es-
timation techniques and passes. The first pass is unadapted
while the second and third pass are adapted on the hypoth-
esis of the previous pass using maximum likelihood linear
regression, feature space adaptation and vocal track length
normalization. Except for the third pass the warped-MVDR
spectral envelope leads to better results than the Fourier spec-
trum (the classical Mel-frequency cepstal coefficients) and
looses 0.2% in performance on the third pass. The warped-
LP and W2LP perform nearly equally well. On the third pass
W2LP shows a 0.2% improvement over the warped-LP. The
novel proposed spectral envelope is performing significantly
better on all passes compared to all other front-ends under
consideration. In a direct comparison to the warped-MVDR
an improvement of at least 0.5% in WER can be seen.

Spectral Estimation
pass 1 pass 2 pass 3

Fourier 36.1% 30.3% 28.0%
warped-LP 34.9% 30.1% 28.4%
W2LP 35.0% 30.1% 28.2%
warped-MVDR 32.0% 30.0% 28.2%
W2MVDR 31.5% 29.5% 27.5%

WER

Table 1: Word error rates (WER)s for five speakers and dif-
ferent spectral estimation methods.

5. CONCLUSION

We have introduced an extension to warped-MVDR spec-
tral estimation by a second bilinear-transformation dubbed
warped-twice MVDR which provides two ways of freedom:
an overall increase or decrease in resolution and a resolu-
tion shift to lower of higher frequencies. We have demon-
strated one possible application of the W2MVDR envelope
by steering the spectral resolution to emphasize classifica-
tion relevant features by a steering function based on auto-
correlation. The two ways of freedom allow for a variety of
adaptation methods which should be investigated in the fu-
ture. One promising adaptation could be a resolution adapta-
tion in a maximum likelihood fashion, similar to vocal tract
length normalization.
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