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ABSTRACT pose of SSA is to decompose the embedded signal vectors

Biomedical signals are generally contaminated with astifa into additive components. This can be used to separate noise

and noise. In case the artifacts dominate, the useful Si%:_ontributions from a recorded signal by estimating those di

nal can easily be extracted with projective subspace tec ections, corresponding to tielargest eigenvalues, which

nigues. Then, biomedical signals which often represent ongN be associated with the eigenvectors spanning the signal

dimensional time series, need to be transformed to multiSUPSPace. The remaining orthogonal directions then can be

dimensional signal vectors for the latter techniques topbe a asSociated with the noise subspace. Reconstructing the sig
al using only thosé. dominant components then can re-

plicable. The transformation can be achieved by embeddin X ; : X .

an observed signal in its delayed coordinates. Using thi It in a substantial noise reduction of the recorded sgnal

embedding we propose to cluster the resulting feature ve ~onsidering EEG Slgnals_on% usual_lyl |sdno: con(r:]erned_wnh
; : uperimposed random noise but mainly deals with prominent

tors and apply a singular spectrum analysis (SSA) IOcan)?rtifacts like electrooculogram (EOG) and electrocardiog

in each cluster to recover the undistorted signals. We als CG) interf head t blinks etc. H
compare the reconstructed signals to results obtained wi ) interferences, head movements, eye blinks etc. Hence
we will in the following consider the artifactual contrilioms

kernel-PCA. Both nonlinear subspace projection techrsique . N . .
are applied to artificial data to demonstrate the supprlassioto the recorded EEG signals "the signal” and the actual EEG

of random noise signals as well as to an eIectroencephal("}lgn‘:E‘rllS as sori_of a blraoadbantd nr(1)|s_e ' Con];sequgr:tly vl\)/e ca?
gram (EEG) signal recorded in the frontal channel to extractS¢ N€ projective subspace techniques reterred 1o above 1o

its prominent electrooculogram (EOG) interference. separate the artifacts from the "pure” EEG signals.
The time embedding of the sensor signals transforms one

dimensional time series into multidimensional signal vest
1. INTRODUCTION This is a necessary step to have subspace projection tech-
In many biomedical signal processing applications a sensdliques available. However, this step unavoidably intreduc
signal is contaminated with artifactual signals as well gsw & honlinearity into the signal analysis process. Of course,
noise signals of substantial amplitude. The former somethere also exist generically nonlinear signal processiob-t
times can be the most prominent signal component regigliques like kernel-PCA (KPCA) which are often used for de-
tered, while the latter is often assumed to be additive,ayhit N0ising. So it will be of interest to explore these techni&gjue
normally distributed and non-correlated with the sensgr si in their ability to remove dominant artifacts and/or supgsre
nals. Often signal to noise ratios (SNR) are quite low. Hencé&olIse. .
to recover the signals of interest the task is to remove both In this work we will introduce the concept of local SSA
the artifactual signal components as well as the superigtbos Which means that after the time embedding we cluster the re-
noise contributions. sulting multidimensional signal vectors and apply thedine
Projective subspace techniques can then be used favéiignal decomposition techniques only locally in each clus-
ably to get rid of most of the noise contributions to mul-ter. We show that both non-linear techniques, local SSA
tidimensional signals [7]. But many biomedical signalsOr kernel-PCA [9], turn out to be more efficient than sim-
represent one dimensional time series. Clearly projectivBle SSA. Both methods will be presented following a ma-
subspace techniques are not available for one dimension&x manipulation approach which is particularly suitafde
time series to suppress noise contributions, hence time s@€aling with the pre-image problem in kernel-PCA. Some
ries analysis techniques often rely on embedding a one dfoy data will illustrate the application of the methods tpsu
mensional sensor signal in a high-dimensional space of timdress noise, while later on these methods are used to extract
delayed coordinates [5], [2], [12]. Correlations in thesgm EOG artifacts from frontal EEG recordings.
tidimensional signal vectors together with second ordsgr-te
niques can be used to decompose the signal into uncorrelated 2. METHODS
components. The multidimensional signal is then projecte 1 Embeddin
to the most significant directions computed using singular” 9
value decomposition (SVD) or principal component analysigEEmbedding can be regarded as a mapping that transforms a
(PCA). one-dimensional time series= (x[0],x[1],...,x[N—1]) to a
Singular spectrum analysis (SSA) [4] used in climatic,multidimensional sequence Kf= N —M + 1 lagged vectors
meteorologic and geophysics data analysis is the mostwidel
used technique that follows this strategy. The general pur- x=Xk—1+M—-1],... xk—=1]]", k=1..K (1)



with M < N being the corresponding window length or the2.3 Kernel-PCA

embedding dimension. The lagged vectors then constitute 5 1 ~oyariances and kernels

the columns of the trajectory matriX = [x; ---xk] which

represents a Toeplitz matrix. The further processing a thiln kernel-PCA (KPCA) a multidimensional signaj, k =
data matrix is performed by either applying local SSA or ker-1...K, is considered to be mapped through a non-linear func-
nel PCA, two nonlinear projective techniques operating in dion ¢(xx) into a feature space yielding the mapped data set

corresponding feature space. ® = [@p(x1)P(x2)...0(xk)]. In feature space then a linear
PCA is performed estimating the eigenvectors and eigenval-
22 Local SSA ues of a matrix obuter products, called @ovariance ma-

trix or, for zero mean data, the non-normalizegrelation
Local SSA basically introduces a clustering step into tha SS matrix C = ®®. It can be shown that these eigenvectors
technique [11] and operates in feature space. It encompassand -values are related to those of a matrixrofer prod-
the following steps: ucts, called &ernel matrixK = ®T®. Using the kernel
trick [9], this kernel matrix can be computed without explic

e After embedding, the column vectatg k= 1...K of the . :
trajectory matrix are clustered using any clustering algoltIy mapping the data. The centered kernel makixcan be

rithm (like k-means [1]). After clustering, the set of in- computed as follows
dices of the columns oK is subdivided intog disjoint

subsetscy, Cz,...cq. Thus sub-trajectory matriX (@) is 1., ot 1. .1
formed withNg, columns of the matrixX which belong Ke = (I-ikik)® (- jkik)
to the subset of indices. 1 1
. L . . . T . T
e A covariance matrix is computed in each cluster using = (I- RJKJK)K(I— RJKJK) (5)

zero mean data obtained via

1 Notice that each elemekdi, j) of the kernel matrices de-
Xe =X (1- jeil) (2)  pends on the inner produgl (x;)@(x;) which can be com-
Ne; ' puted using only the dats in input space. For instance if
an RBF kernel is used(i, j) is calculated according to
wherej, =[1,1,..., 1]" is a vector with dimensioNg x
1, andI is aNg x Ng identity matrix. . [|xi —x;j||?
e Next, the eigenvalue decomposition of the covariance k(i, ) = exp(———7—) 6)
matrix is computed, i.e.
whereo? is a parameter that is related to the variance of the
C = (XX!)=UuDU"T (3) data.
Because the eigenvalues of the non-normalized covari-
Afterwards denoising can be achieved by projecting théiNce matrix coincide with the eigenvalues of the kernel ma-
multidimensional signal into the subspace spanned by thiX. their eigenvectors are related by
eigenvectors corresponding to thg < M largest eigen- 1
values. U=d(I- —jKjE)VD’l/Z 7)
e The latter eigenvectors are also used in the reconstruction K
process. Considering the matiikwith L, eigenvectors \whereU is the matrix withL eigenvectors of the covariance
in its columns, the reconstructed vectors in each clusteatrix, v is the matrix withL eigenvectors of kernel matrix

are obtained as andD is a diagonal matrix with the correspondihg< K
1 largest eigenvalues of both matrices. Once a data poineof th
X —yguTx©) 4 _X(Ci>jCiin (4) inputspacg; is mapped to the feature space to obtain its im-
Ne, age@(y J-), the latter can be projected onto theigenvectors

spanning the feature space to obtain

e The clustering is reverted by forming an estimae 1
of the reconstructed, noise-free trajectory matrix using zj=D V2VT(1-= jKjE)kyj (8)
the columns of the extracted sub-trajectory matrices, K
X(@) j=1,... qaccording to the contents of subsets

Ci. . ..
: . . or of inner products between the training détand(y;j),

o Notice tha}'n Qe”era' glemgnts glong each descendllng aturally co?nputed using the kernel tricgk. There(paE?’eJ)many
agonal ofX will not be identical like in case of the orig- appjications where the projections are the only infornmatio
inal trajectory matrixX. This can be cured by replacing that is needed. However, in denoising appiications it is
the entries in each diagonal by their average. This propeeded to reconstruct any point in feature space using the
cedure assures that the Frobenius norm of the differenqe gjgenvectors and then estimate the position of the corre-
between the original matrix and the reconstructed mat“)éponding point in the input space, i.e. compute its pre-gnag
has minimum value among all possible solutions to get ag 10]. In this application, the multidimensional signal i
matrix with all diagonals equal. denoised and the one-dimensional signal can be obtained by

e The noise-reduced one-dimensional sigiai], is then  reverting the embedding as described in the two last steps of
obtained by reverting the embedding. local SSA.

whereky, = [k(x1,y),K(x2,¥j),...,k(xk,yj)]" is the vec-



2.3.2 Reconstruction and Pre-Image 3. RESULTSAND DISCUSSION

The reconstruction of the point in the feature space is confhe methods were implemented in MATLAB using the tool-
bined with the estimate of the pre-image in the input spacebox provided by Franc [3], where basic pattern recognition
Combining these two steps the kernel trick can be used artdols and kernel methods can be found. In the following the
the reconstruction never needs to be computed explicijly [Bmethods discussed above will be applied to toy examples as
avoiding to work in the feature space. The most recent workvell as EEG signals.
[8] to find the pre-image of a point of the feature space is
based on the fact that it is possible to compute the coordi-
nates of a new point if we know its distance to a set of known
points [6]. The proposed method consists of the following (

steps:

e The vector of squared distanc@®) between the recon- N
structed image@(y,—) and the training data seb are N )
computed. Considering the reconstructed p(ﬁi@tj) = |
Uz; and substituting eqn. 7, we can re-wrigy;) = e e S
®g, whereg is aK x 1 vector. Then using the kernel (a) sinusoid (b) sinusoid+noise
trick we obtain the row vector of distances = £

. : OMM*M : T
d® = gTKg + diag(K) — 2¢'K @ . { 4o
e If an RBF is considered, there is a relation between the “ a
input space distancé® and the corresponding feature \\\ /
space distance. Once the distance in feature space ca - N/ . e
also be computed as - e —
(c) local SSA (d) Kernel-PCA
a® - 2 a® 10
= 20k —exp=353)) (10) Figure 1: Signals embedded in time-delayed coordinates

M=2
the vector of distances in input space is then given by

@ — _252In(ivx — 0.54@

d@ = —202In(jk — 0.5d?) (A1) 31 Toy examples
» Considering a subset of neighbors of the reconstructegihe first toy example to be discussed comprises an artifi-
point @(yj) (i.e choosing thes points with smallest dis-  cially generated sinusoid, the other uses a chaotic tiniesser
tanced®), and given the corresponding poifs=  given by Hénon’s equation. To both time senég Gaussian
[p1,P2,...pg| in input space, the coordinate system forwhite noise will be addeg[fi] = x[n] +-r[n] corresponding to
the subset may be defined as the columns of the eige@-signal-to-noise ratiSNR= 20dB. Afterwards the data is

vector matrixE of their covariance matrix. After center- embedded in delayed coordinates ugihg- 2.

ing

1.1, 3.1.1 Sinusoidal time series
Pe = P(I- giljs) w2 . _
Figure 1 shows the 2-D representation of the corresponding
) L T vector signals. To achieve denoising, at first local SSA is ap
the stsndard eigendecomposition is given(B¥P¢) =  plied. The embedded data are grouped ipte 10 clusters
EDE’. usingk-meanglustering. In each cluster the covariance ma-

o ThenW = ETP_C represent the new coordinates of thetrix of the data is calculated. As its size is onlyk22, we
points Pc. Their distance to the origin is obtained as project the data on the eigenvector which corresponds to the

d(()z) =[|| w1 ||% ]| w2 ||? ... || ws ||?]. The new coordi- largest eigenvalue. The other direction is considered to be
nates of the projected point in the input space are thefelated with the noise. Figure 1 shows that in each cluster
given by the reconstructed data, following the direction of maximum

variance locally, represents a good approximation to the un
derlying trajectory in phase space.

KPCA was implemented using an RBF kernel with width
. parametep? = 1 andL = 3 principal components have been
The pre-image of ¢(y;) is finally obtained as used for the PCA in feature space. To estimate the pre-
images of the data using the distance method referred to
above,S= 10 nearest neighbors were considered. Figure 1
shows that KPCA results in a smoother approximation to the
underlying phase space trajectory. But some outliers remai

Note that not every point in feature space may have ghich probably result from bad estimates of the correspond-
corresponding pre-image in input space [9]. ing pre-images.

&= (—1/2(WWT) 'w(d?-af) (13)

1
c=Ec+ éPjS (14)



3.2 EEG data

The second example considers a nonlinear time series+esuBiomedical signals are often contaminated with artifattua
ing from the following dynamicg[n+1] =1—a-x’[n]+b-  signals which severely distort the signals to be investidat
x[n— 1] wherea = 1.4,b = 0.3 has been used. The result- As an example we will study the removal of the prominent
ing data was embedded in delayed coordinates Udirg2.  EOG artefact from EEG recordings. Hence all remaining sig-
Figure 2-a) shows the phase space trajectories generated hgls in the EEG recording will be considered "noise” for the
this dynamical model known as the Hénon map. Figure 2sake of the argument. Figure 3 gives an illustrative example
b) shows the corresponding data set with added Gausssiafithe results obtained. A local SSA analysis has been per-
noise. Applying local SSA witly = 15 clusters results in the
"denoised” trajectories shown in Figure 2-c). It can be seel
that the local approximations to the underlying dynamies re
flect the general trend of the data very well. But it is also
obvious that the mapping is not always smooth. This result:
from the structure of the local clusters which possess princ
pal directions deviating from the underlying dynamics due t
noise. Also it can be seen that the fine structure of the Hénc?
map cannot be captured where the spacing of segments
the trajectory are too closely spaced compared to the sprei
of the noise. The latter also holds in case of kernel-PCA LStk e et Vraa b momietabins ahgsaiafesley
ing an RBF kernel with a width parameter= 1 andL = 4
principal components in feature space. The pre-image®of tt
data reconstructed in feature space have been estimated us o i B 3 3 5
S=10. Though the resulting trajectories are much smoothe: Time (sec)

than in case of local SSA they also are much more noisy still

3.1.2 Henontime series

Figure 3: A segment dbp: a recorded EEG signatiddle
an EOG signal extracted with kernel-PCA aattom the
residual signal (corrected EEG)

1 “"!‘n‘?;:::‘:x
o3 ?**ii‘"% formed usingN = 1536 samples recorded with a sampling
, - "53 rate of 1281z. The data have been embedded in delayed co-
. &;,ff"f; ordinates usingl = 41. The resulting columns of the tra-
. g jectory matrix have been clustered choosing 6 clusters. The

(c) local SSA

(d) Kernel-PCA

dimension of the signal subspace in each cluster has been
estimated applying an MDL (minimum description length)
criterion. The dimension of the signal subspace is differen
in each cluster and takes a value in the rafige 10 [11].
Figure 4-a) shows the power spectral densities (psd) of the
recorded EEG signal, the extracted EOG signal and the resid-
ual signal (corrected EEG). It can be seen that local SSA al-
lows to remove both the EOG artefact as well as the 50 Hz
line noise without distorting the remaining psd. But it seem
to suppress the psd in the low frequency band too strongly,
hence may remove other low frequency components as well.

kernel-PCA could not be applied to the whole segment
because of a prohibitive computational load, hence only sub

Figure 2: Signals embedded in time-delayed coordinateSegments wittN = 384 samples could be analyzed. With

M=2

kernel-PCA an embedding dimension Mf= 41 was used
again; the width parameter of the RBF kernel was chosen
as a fixed percentage of the variance of the data set, i.e.

It has to be noticed that the projective subspace denoiszidgr = 0.502,,,. For the reconstruction an 8-dim feature
ing (SSA) will result in a straight line corresponding to the space corresponding to the eight largest eigenvalues leas be

direction of maximum variance of the data. Further note thathosen in accordance with the eigenvalue spectrum obtained
unlike linear PCA, kernel-PCA allows to extract a number ofFigure 3 illustrates the extracted artifact as well as the co
principal components that exceeds the dimensionality®f thrected EEG signal within two subsegments. Figure 4-b)
input data. Notice that havirl§ > M examples of data with shows the resulting power spectral densities for the whole
dimensionM, working in input space, the maximum num- data segment. It can clearly be seen that kernel-PCA removes
ber of nonzero eigenvalues will also beas can be seen by the EOG signal completely and does not suppress all low fre-
either computing the covariance matrix or the matrix of dotquency contributions to the psd. However, it does not remove
products. In kernel-PCA instead, the kernel matrix in feathe 50 Hz line noise. It has to be noted that the correlation
ture space will have sizk x K and the number of nonzero coefficients between the EOGs and the corrected EEGs ex-
eigenvalues can often be higher thdn tracted by both methods amount to 0.99 and 0.81, respec-
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Figure 4: Power spectral densities (psd) resulting from

(a)local SSA (b) kernel-PCA

local linear projection results in a too strong contractidn
the data points to the low-dimensional submanifold. The su-
perior performance of KPCA in this case results because the
number of components to reconstruct the multidimensional
signal can be larger than the input space dimension. In the
extraction of EOG artifacts from EEG recordings, however,
the number of components never exceeded the dimension of
the input space and the signal extracted with KPCA is very
similar to the one extracted with local SSA. However, KPCA
seems to resultin less distortions in the low frequencymegi

of the EEG spectrum. In summary, though local SSA is less
complex hence much easier to implement, kernel-PCA re-
sults in less distortions or over-fitting in the low frequgnc
regime where the EOG artifact dominates. Further it has
to be mentioned that with the prominent EOG artifact, lo-
cal SSA is able to extract also the 50 Hz line noise artifact
simultaneously which is not the case with KPCA.
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