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ABSTRACT

Biomedical signals are generally contaminated with artifacts
and noise. In case the artifacts dominate, the useful sig-
nal can easily be extracted with projective subspace tech-
niques. Then, biomedical signals which often represent one
dimensional time series, need to be transformed to multi-
dimensional signal vectors for the latter techniques to be ap-
plicable. The transformation can be achieved by embedding
an observed signal in its delayed coordinates. Using this
embedding we propose to cluster the resulting feature vec-
tors and apply a singular spectrum analysis (SSA) locally
in each cluster to recover the undistorted signals. We also
compare the reconstructed signals to results obtained with
kernel-PCA. Both nonlinear subspace projection techniques
are applied to artificial data to demonstrate the suppression
of random noise signals as well as to an electroencephalo-
gram (EEG) signal recorded in the frontal channel to extract
its prominent electrooculogram (EOG) interference.

1. INTRODUCTION

In many biomedical signal processing applications a sensor
signal is contaminated with artifactual signals as well as with
noise signals of substantial amplitude. The former some-
times can be the most prominent signal component regis-
tered, while the latter is often assumed to be additive, white,
normally distributed and non-correlated with the sensor sig-
nals. Often signal to noise ratios (SNR) are quite low. Hence
to recover the signals of interest the task is to remove both
the artifactual signal components as well as the superimposed
noise contributions.

Projective subspace techniques can then be used favor-
ably to get rid of most of the noise contributions to mul-
tidimensional signals [7]. But many biomedical signals
represent one dimensional time series. Clearly projective
subspace techniques are not available for one dimensional
time series to suppress noise contributions, hence time se-
ries analysis techniques often rely on embedding a one di-
mensional sensor signal in a high-dimensional space of time-
delayed coordinates [5], [2], [12]. Correlations in these mul-
tidimensional signal vectors together with second order tech-
niques can be used to decompose the signal into uncorrelated
components. The multidimensional signal is then projected
to the most significant directions computed using singular
value decomposition (SVD) or principal component analysis
(PCA).

Singular spectrum analysis (SSA) [4] used in climatic,
meteorologic and geophysics data analysis is the most widely
used technique that follows this strategy. The general pur-

pose of SSA is to decompose the embedded signal vectors
into additive components. This can be used to separate noise
contributions from a recorded signal by estimating those di-
rections, corresponding to theL largest eigenvalues, which
can be associated with the eigenvectors spanning the signal
subspace. The remaining orthogonal directions then can be
associated with the noise subspace. Reconstructing the sig-
nal using only thoseL dominant components then can re-
sult in a substantial noise reduction of the recorded signals.
Considering EEG signals one usually is not concerned with
superimposed random noise but mainly deals with prominent
artifacts like electrooculogram (EOG) and electrocardiogram
(ECG) interferences, head movements, eye blinks etc. Hence
we will in the following consider the artifactual contributions
to the recorded EEG signals ”the signal” and the actual EEG
signals as ”sort of a broadband noise”. Consequently we can
use the projective subspace techniques referred to above to
separate the artifacts from the ”pure” EEG signals.

The time embedding of the sensor signals transforms one
dimensional time series into multidimensional signal vectors.
This is a necessary step to have subspace projection tech-
niques available. However, this step unavoidably introduces
a nonlinearity into the signal analysis process. Of course,
there also exist generically nonlinear signal processing tech-
niques like kernel-PCA (KPCA) which are often used for de-
noising. So it will be of interest to explore these techniques
in their ability to remove dominant artifacts and/or suppress
noise.

In this work we will introduce the concept of local SSA
which means that after the time embedding we cluster the re-
sulting multidimensional signal vectors and apply the linear
signal decomposition techniques only locally in each clus-
ter. We show that both non-linear techniques, local SSA
or kernel-PCA [9], turn out to be more efficient than sim-
ple SSA. Both methods will be presented following a ma-
trix manipulation approach which is particularly suitablefor
dealing with the pre-image problem in kernel-PCA. Some
toy data will illustrate the application of the methods to sup-
press noise, while later on these methods are used to extract
EOG artifacts from frontal EEG recordings.

2. METHODS

2.1 Embedding

Embedding can be regarded as a mapping that transforms a
one-dimensional time seriesx = (x[0],x[1], ...,x[N−1]) to a
multidimensional sequence ofK = N−M+1 lagged vectors

xk = [x[k−1+M−1], . . . ,x[k−1]]T, k = 1...K (1)



with M < N being the corresponding window length or the
embedding dimension. The lagged vectors then constitute
the columns of the trajectory matrixX = [x1 · · ·xK ] which
represents a Toeplitz matrix. The further processing of this
data matrix is performed by either applying local SSA or ker-
nel PCA, two nonlinear projective techniques operating in a
corresponding feature space.

2.2 Local SSA

Local SSA basically introduces a clustering step into the SSA
technique [11] and operates in feature space. It encompasses
the following steps:

• After embedding, the column vectorsxk,k = 1...K of the
trajectory matrix are clustered using any clustering algo-
rithm (like k-means [1]). After clustering, the set of in-
dices of the columns ofX is subdivided intoq disjoint
subsetsc1,c2, ...cq. Thus sub-trajectory matrixX(ci) is
formed withNci columns of the matrixX which belong
to the subset of indicesci .

• A covariance matrix is computed in each cluster using
zero mean data obtained via

Xc = X(ci)(I−
1

Nci

jci j
T
ci
) (2)

wherejci = [1,1, . . . ,1]T is a vector with dimensionNci ×
1, andI is aNci ×Nci identity matrix.

• Next, the eigenvalue decomposition of the covariance
matrix is computed, i.e.

C = 〈XcX
T
c 〉 = UDUT (3)

Afterwards denoising can be achieved by projecting the
multidimensional signal into the subspace spanned by the
eigenvectors corresponding to theLci < M largest eigen-
values.

• The latter eigenvectors are also used in the reconstruction
process. Considering the matrixU with Lci eigenvectors
in its columns, the reconstructed vectors in each cluster
are obtained as

X̂(ci) = UUTX(ci) +
1

Nci

X(ci)jci j
T
ci

(4)

• The clustering is reverted by forming an estimateX̂
of the reconstructed, noise-free trajectory matrix using
the columns of the extracted sub-trajectory matrices,
X̂(ci), i = 1, ....,q according to the contents of subsets
ci .

• Notice that in general elements along each descending di-
agonal ofX̂ will not be identical like in case of the orig-
inal trajectory matrixX. This can be cured by replacing
the entries in each diagonal by their average. This pro-
cedure assures that the Frobenius norm of the difference
between the original matrix and the reconstructed matrix
has minimum value among all possible solutions to get a
matrix with all diagonals equal.

• The noise-reduced one-dimensional signal, ˆx[n], is then
obtained by reverting the embedding.

2.3 Kernel-PCA

2.3.1 Covariances and kernels

In kernel-PCA (KPCA) a multidimensional signalxk, k =
1...K, is considered to be mapped through a non-linear func-
tion φ(xk) into a feature space yielding the mapped data set
Φ = [φ(x1)φ(x2)...φ(xK)]. In feature space then a linear
PCA is performed estimating the eigenvectors and eigenval-
ues of a matrix ofouter products, called acovariance ma-
trix or, for zero mean data, the non-normalizedcorrelation
matrix C = ΦΦT . It can be shown that these eigenvectors
and -values are related to those of a matrix ofinner prod-
ucts, called akernel matrixK = ΦTΦ. Using the kernel
trick [9], this kernel matrix can be computed without explic-
itly mapping the data. The centered kernel matrixKc can be
computed as follows

Kc = (I−
1
K

jKjTK)ΦTΦ(I−
1
K

jKjTK)

= (I−
1
K

jKjTK)K(I−
1
K

jKjTK) (5)

Notice that each elementk(i, j) of the kernel matrices de-
pends on the inner productφT(xi)φ(x j ) which can be com-
puted using only the dataxk in input space. For instance if
an RBF kernel is used,k(i, j) is calculated according to

k(i, j) = exp(−
‖xi −x j‖

2

2σ2 ) (6)

whereσ2 is a parameter that is related to the variance of the
data.

Because the eigenvalues of the non-normalized covari-
ance matrix coincide with the eigenvalues of the kernel ma-
trix, their eigenvectors are related by

U = Φ(I−
1
K

jKjTK)VD−1/2 (7)

WhereU is the matrix withL eigenvectors of the covariance
matrix,V is the matrix withL eigenvectors of kernel matrix
andD is a diagonal matrix with the correspondingL ≤ K
largest eigenvalues of both matrices. Once a data point of the
input spacey j is mapped to the feature space to obtain its im-
ageφ(y j), the latter can be projected onto theL eigenvectors
spanning the feature space to obtain

z j = D−1/2VT(I−
1
K

jKjTK)kyj (8)

wherekyj = [k(x1,y j ),k(x2,y j ), . . . ,k(xK ,y j )]
T is the vec-

tor of inner products between the training dataΦ andφ(y j ),
naturally computed using the kernel trick. There are many
applications where the projections are the only information
that is needed. However, in denoising applications it is
needed to reconstruct any point in feature space using the
L eigenvectors and then estimate the position of the corre-
sponding point in the input space, i.e. compute its pre-image
[8, 10]. In this application, the multidimensional signal is
denoised and the one-dimensional signal can be obtained by
reverting the embedding as described in the two last steps of
local SSA.



2.3.2 Reconstruction and Pre-Image

The reconstruction of the point in the feature space is com-
bined with the estimate of the pre-image in the input space.
Combining these two steps the kernel trick can be used and
the reconstruction never needs to be computed explicitly [8]
avoiding to work in the feature space. The most recent work
[8] to find the pre-image of a point of the feature space is
based on the fact that it is possible to compute the coordi-
nates of a new point if we know its distance to a set of known
points [6]. The proposed method consists of the following
steps:

• The vector of squared distancesd̃(2) between the recon-
structed imageŝφ (y j) and the training data setΦ are
computed. Considering the reconstructed pointφ̂(y j ) =

Uz j and substituting eqn. 7, we can re-writeφ̂ (y j) =
Φg, whereg is a K × 1 vector. Then using the kernel
trick we obtain the row vector of distances

d̃(2) = gTKg+diag(K)−2gTK (9)

• If an RBF is considered, there is a relation between the
input space distanced(2) and the corresponding feature
space distance. Once the distance in feature space can
also be computed as

d̃(2) = 2(jK −exp(−
d(2)

2σ2 )) (10)

the vector of distances in input space is then given by

d(2) = −2σ2 ln(jK −0.5d̃(2)) (11)

• Considering a subset of neighbors of the reconstructed
point φ̂(y j ) (i.e choosing theSpoints with smallest dis-
tance d̃(2)), and given the corresponding pointsP =
[p1,p2, ...pS] in input space, the coordinate system for
the subset may be defined as the columns of the eigen-
vector matrixE of their covariance matrix. After center-
ing

Pc = P(I−
1
S
jTSjS) (12)

the standard eigendecomposition is given by〈PcP
T
c 〉 =

EDET .
• ThenW = ETPc represent the new coordinates of the

points Pc. Their distance to the origin is obtained as

d
(2)
0 = [‖ w1 ‖2,‖ w2 ‖2 ... ‖ wS ‖2]. The new coordi-

nates of the projected point in the input space are then
given by

c̃ = (−1/2)(WWT)−1W(d(2)−d
(2)
0 ) (13)

The pre-imagec of φ̂ (y j ) is finally obtained as

c = Ec̃+
1
S
PjS (14)

Note that not every point in feature space may have a
corresponding pre-image in input space [9].

3. RESULTS AND DISCUSSION

The methods were implemented in MATLAB using the tool-
box provided by Franc [3], where basic pattern recognition
tools and kernel methods can be found. In the following the
methods discussed above will be applied to toy examples as
well as EEG signals.
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(d) Kernel-PCA

Figure 1: Signals embedded in time-delayed coordinates
M = 2

3.1 Toy examples

The first toy example to be discussed comprises an artifi-
cially generated sinusoid, the other uses a chaotic time series
given by Hénon’s equation. To both time seriesx[n] Gaussian
white noise will be added ˜x[n] = x[n]+ r[n] corresponding to
a signal-to-noise ratioSNR= 20dB. Afterwards the data is
embedded in delayed coordinates usingM = 2.

3.1.1 Sinusoidal time series

Figure 1 shows the 2-D representation of the corresponding
vector signals. To achieve denoising, at first local SSA is ap-
plied. The embedded data are grouped intoq = 10 clusters
usingk-meansclustering. In each cluster the covariance ma-
trix of the data is calculated. As its size is only 2× 2, we
project the data on the eigenvector which corresponds to the
largest eigenvalue. The other direction is considered to be
related with the noise. Figure 1 shows that in each cluster
the reconstructed data, following the direction of maximum
variance locally, represents a good approximation to the un-
derlying trajectory in phase space.

KPCA was implemented using an RBF kernel with width
parameterσ2 = 1 andL = 3 principal components have been
used for the PCA in feature space. To estimate the pre-
images of the data using the distance method referred to
above,S= 10 nearest neighbors were considered. Figure 1
shows that KPCA results in a smoother approximation to the
underlying phase space trajectory. But some outliers remain
which probably result from bad estimates of the correspond-
ing pre-images.



3.1.2 H́enon time series

The second example considers a nonlinear time series result-
ing from the following dynamicsx[n+1] = 1−a ·x2[n]+b ·
x[n− 1] wherea = 1.4,b = 0.3 has been used. The result-
ing data was embedded in delayed coordinates usingM = 2.
Figure 2-a) shows the phase space trajectories generated by
this dynamical model known as the Hénon map. Figure 2-
b) shows the corresponding data set with added Gausssian
noise. Applying local SSA withq= 15 clusters results in the
”denoised” trajectories shown in Figure 2-c). It can be seen
that the local approximations to the underlying dynamics re-
flect the general trend of the data very well. But it is also
obvious that the mapping is not always smooth. This results
from the structure of the local clusters which possess princi-
pal directions deviating from the underlying dynamics due to
noise. Also it can be seen that the fine structure of the Hénon
map cannot be captured where the spacing of segments of
the trajectory are too closely spaced compared to the spread
of the noise. The latter also holds in case of kernel-PCA us-
ing an RBF kernel with a width parameterσ = 1 andL = 4
principal components in feature space. The pre-images of the
data reconstructed in feature space have been estimated using
S= 10. Though the resulting trajectories are much smoother
than in case of local SSA they also are much more noisy still.
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Figure 2: Signals embedded in time-delayed coordinates
M = 2

It has to be noticed that the projective subspace denois-
ing (SSA) will result in a straight line corresponding to the
direction of maximum variance of the data. Further note that
unlike linear PCA, kernel-PCA allows to extract a number of
principal components that exceeds the dimensionality of the
input data. Notice that havingK ≥ M examples of data with
dimensionM, working in input space, the maximum num-
ber of nonzero eigenvalues will also beM as can be seen by
either computing the covariance matrix or the matrix of dot
products. In kernel-PCA instead, the kernel matrix in fea-
ture space will have sizeK ×K and the number of nonzero
eigenvalues can often be higher thanM.

3.2 EEG data

Biomedical signals are often contaminated with artifactual
signals which severely distort the signals to be investigated.
As an example we will study the removal of the prominent
EOG artefact from EEG recordings. Hence all remaining sig-
nals in the EEG recording will be considered ”noise” for the
sake of the argument. Figure 3 gives an illustrative example
of the results obtained. A local SSA analysis has been per-
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Figure 3: A segment oftop: a recorded EEG signal,middle:
an EOG signal extracted with kernel-PCA andbottom: the
residual signal (corrected EEG)

formed usingN = 1536 samples recorded with a sampling
rate of 128Hz. The data have been embedded in delayed co-
ordinates usingM = 41. The resulting columns of the tra-
jectory matrix have been clustered choosing 6 clusters. The
dimension of the signal subspace in each cluster has been
estimated applying an MDL (minimum description length)
criterion. The dimension of the signal subspace is different
in each cluster and takes a value in the range[5− 10] [11].
Figure 4-a) shows the power spectral densities (psd) of the
recorded EEG signal, the extracted EOG signal and the resid-
ual signal (corrected EEG). It can be seen that local SSA al-
lows to remove both the EOG artefact as well as the 50 Hz
line noise without distorting the remaining psd. But it seems
to suppress the psd in the low frequency band too strongly,
hence may remove other low frequency components as well.

kernel-PCA could not be applied to the whole segment
because of a prohibitive computational load, hence only sub-
segments withN = 384 samples could be analyzed. With
kernel-PCA an embedding dimension ofM = 41 was used
again; the width parameter of the RBF kernel was chosen
as a fixed percentage of the variance of the data set, i.e.
σ2

RBF = 0.5σ2
data. For the reconstruction an 8-dim feature

space corresponding to the eight largest eigenvalues has been
chosen in accordance with the eigenvalue spectrum obtained.
Figure 3 illustrates the extracted artifact as well as the cor-
rected EEG signal within two subsegments. Figure 4-b)
shows the resulting power spectral densities for the whole
data segment. It can clearly be seen that kernel-PCA removes
the EOG signal completely and does not suppress all low fre-
quency contributions to the psd. However, it does not remove
the 50 Hz line noise. It has to be noted that the correlation
coefficients between the EOGs and the corrected EEGs ex-
tracted by both methods amount to 0.99 and 0.81, respec-
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Figure 4: Power spectral densities (psd) resulting from
(a)local SSA (b) kernel-PCA

tively. This demonstrates a rather good correspondence be-
tween both methods concerning the extracted artifacts. The
less good agreement concerning the corrected EEGs is due
to some low frequency distortions remaining after the appli-
cation of local SSA. The results shown here were achieved
using the same embedding dimension for both methods but
with Kernel-PCA that value can be decreased without affect-
ing the performance of the algorithm. However, in the bio-
medical example the dimension of the reconstruction space
in kernel feature space never exceeds the dimension of the
input space contrary to what is observed with toy examples.

4. CONCLUSIONS

The application of projective subspace techniques to one-
dimensional time series relies on an embedding step which
introduces a nonlinearity in the processing chain. This fact
leads to the proposal of local SSA, which is the application of
linear SSA to the clusters formed with the multidimensional
signals resulting from the embedding step. This piecewise
linear approximation is then compared to a generically non-
linear subspace projection technique like KPCA. The toy ex-
amples serve to illustrate that noise reduction of multidimen-
sional signals cannot be achieved using plain SSA. Rather
local SSA is needed which results in a piecewise linear ap-
proximation of the original trajectory matrix of the data. The
denoising performance turns out to be very effective. How-
ever, those examples also seem to indicate that KPCA can
be superior in complex cases like the Hénon map where the

local linear projection results in a too strong contractionof
the data points to the low-dimensional submanifold. The su-
perior performance of KPCA in this case results because the
number of components to reconstruct the multidimensional
signal can be larger than the input space dimension. In the
extraction of EOG artifacts from EEG recordings, however,
the number of components never exceeded the dimension of
the input space and the signal extracted with KPCA is very
similar to the one extracted with local SSA. However, KPCA
seems to result in less distortions in the low frequency regime
of the EEG spectrum. In summary, though local SSA is less
complex hence much easier to implement, kernel-PCA re-
sults in less distortions or over-fitting in the low frequency
regime where the EOG artifact dominates. Further it has
to be mentioned that with the prominent EOG artifact, lo-
cal SSA is able to extract also the 50 Hz line noise artifact
simultaneously which is not the case with KPCA.
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