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ABSTRACT 

I examine the possibility of sampling a Fourier series with 
multiple, uniform rates that are not required to be larger 
than any particular frequency. This is allowed because con-
volution of a Fourier series with a train of delta functions in 
the Fourier domain causes overlap in the Fourier domain 
only in isolated cases. Furthermore, I can restrict this over-
lap to not occur in more than one sampled transform. I use 
three different sampling rates, not required to be greater 
than any particular frequency, yet satisfying certain irra-
tional relationships, which I specify.  The three separate 
Fourier domains from each rate are compared, and a filter 
is used which outputs only those terms which are common to 
all three. In some cases, it might be necessary to introduce a 
fourth sampling rate. The result is that the original Fourier 
series is obtained from the filter and inverse transform. 

1. INTRODUCTION 

In recent years, there has been a considerable amount of re-
search devoted to the idea of sampling a signal at a rate less 
than the Nyquist rate [1]–[5]. In these cases, sampling at such 
a rate is a result of gaps in the frequency occupancies of the 
signal in the Fourier domain.  
 
There has also been a limited amount of attention given to 
sampling periodic signals. One paper [6] does suggest a dou-
ble-sampling technique whereby an appropriate ratio of sam-
pling frequencies yields the ability to detect aliased frequen-
cies in periodic signals. The bandwidth of the combination of 
the two sampling frequencies is a function of their least 
common multiple. Another paper [7] shows that sampling 
periodic piecewise polynomial signals with a finite number 
of degrees of freedom can be sampled at a sub-Nyquist rate. 
 
Very little attention, however, has been devoted to what may 
be the most accurate representation of a real signal – the Fou-
rier series. Representation of a signal as a Fourier series does 
have certain requirements. The signal must be periodic, it 
must be continuous, and it must be piecewise smooth, which 
means that its derivative must exist everywhere, except at 
isolated points. The triangle wave is an example of a con-
tinuous, piecewise smooth function while the square wave is 
not. Despite these requirements, the Fourier series fits a large 
class of periodic signals. 

 
In the Fourier domain, a Fourier series appears as a series of 
delta functions. Since a delta function by definition has no 
width, it seemed as though it might be possible to sample it 
with no minimum requirement.  
 
Inherent to a Fourier series is the idea of rationality. The sine 
and cosine terms all have frequencies that are integer multi-
ples of a base frequency. Because of this, any one frequency 
in any of the terms in the series is a rational multiple of any 
of the other frequencies. It came as no surprise, then, that the 
“trick” to sampling a Fourier series with low rates would 
involve irrational relationships. 

2. SAMPLING OF A FOURIER SERIES 

We begin by representing a signal as a Fourier series: 
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Recall especially that the frequencies shown in the sine and 
cosine functions are all integer multiples of some base fre-
quency. 
 
We will now sample our signal with three separate rates 
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Then we take the Fourier transform: 
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Under convolution, the transform becomes: 
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Notice that the m=0 terms all represent the actual sampled 
function. If we eliminate all the other terms, the inverse 
transform would yield our original signal. Our goal is to 
pick the sampling frequencies such that only the m=0 terms 
are common in frequency to all three transforms. We will 
then implement a filter that removes any terms that are not 
exactly shared between the three transforms.  

3. CHOOSING THE SAMPLING FREQUENCIES 

Our goal, now, is to choose our sampling frequencies such 
that only the m=0 terms in (1) are shared by all three trans-
forms. There are three ways in which the terms in all three 
transforms can be shared. The first way is that the m=0 or 
“true” terms all line up. This will happen regardless of our 
selection of sampling frequencies. The second is that other 
selections of m will cause what I will call “cross-aliasing” to 
occur. For example, selecting m=24 in one term in one trans-
form and selecting m=50 in another transform could cause 
the delta functions to occur in exactly the same place in both 
transforms, if the sampling frequencies are chosen with the 
proper relationship. We will completely eliminate the possi-
bility of this occurring in all three transforms. 
 
The third manner in which the delta functions can be shared 
in the transforms is the result of an “unlucky” selection of a 
sampling frequency. These “unlucky” selections do not cause 
the frequency occupancies of the sampled functions from (1) 
to change. They do, however, distort the amplitudes of coef-
ficients to the delta functions, and thus, make re-creating the 
function from our filter rather difficult. However, it will be 
possible to still re-create our function. We will refer to the 
third manner of sharing terms as “self-aliasing”. 
 
3.1 Cross-Aliasing 
Recall, in (1), that the ω n terms are all integer multiples of 
some base frequency. Thus, in order for cross aliasing to oc-
cur from all three transforms we will need 
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where m, l, and n are integers not equal to zero; M, L, and N 
are integers; and ω 0 is the fundamental frequency of the Fou-
rier series.  
 
Creating separate equations we have 
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as well as 
 

0020
wwww MNnm ss -=- . 

 
We can introduce a new integer into the RHS of both equa-
tions that replaces the two integers. Then we have 
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www Plm ss =-    (3) 

 
as well as 
 

020
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And now we divide (3) by (4): 
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This is equivalent to saying that the LHS of this equation 
must be a rational number in order for all three transforms to 
share cross-aliasing terms. In other words, if the LHS is irra-
tional, we will not be able to satisfy the RHS, and all three 
transforms will not share cross-aliasing terms. 
 
 
3.2  Self-Aliasing 
We can always be “unlucky” and choose a sampling rate that 
is a rational multiple of the fundamental frequency in the 
Fourier series. This might distort the amplitudes of terms 
corresponding to the m=0 terms, if there are non-zero coeffi-
cients to the delta functions While we cannot eliminate this 
from happening in one of the transforms from (1), we can 
eliminate this from occurring in more than one transform. 
 
For self aliasing to occur in two transforms we must have 
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and 
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The solution is simple: we divide (6) by (7) and find that the 
ratio of the two sampling rates must be a rational number in 
order for self-aliasing to occur in both transforms. Therefore, 
if all three sampling rates are irrational multiples of each 
other, then self-aliasing will occur in only one transform. 
 
Note that we have not made any restrictions on the size of the 
sampling frequencies. We do not need to make any. Our re-
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strictions ensure that we will be able to “tell” what is an ali-
ased frequency and what is not. 

4. RECOVERY FILTER 

We must still recover our original Fourier series from the 
three separate transforms. I give the filter as  
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This integral can be interpreted as deconvolution. The sam-
pled functions can be interchanged as long as the function 
outside the integral is accompanied by its correct sampling 
period. The effect of the integral is to “select” those delta 
functions which are exactly shared between the two sampled 
functions within the integral. The delta functions must occur 
at the same frequency, and with the same amplitude. This 
effect, combined with the sampled function outside the inte-
gral, effectively selects those delta functions that are shared 
between the three sampled transforms. 
 
But what if self-aliasing has occurred? If this is the case, then 
we will get different answers if we interchange S0, S1, and S2. 
The reason is that self-aliasing only occurs in one of the 
transforms. If the self-aliased transform is outside the inte-
gral, then the self-aliased frequencies will correspond to a 
non-zero solution. If, however, the self-aliased transform is 
inside the integral, the self-aliased frequencies will corre-
spond to a zero solution, since the amplitude of the delta 
function will not be exactly shared with the accompanying 
transform inside the integral. 
 
The solution is to introduce a fourth sampling rate that satis-
fies our two irrational relationships. Finding the correct three 
out of the four transforms, then, is as simple as finding the 
three transforms that do not give us a different answers when 
we interchange them in (8). Using the solution from (8) as 
the function for the inverse Fourier transform, now, will give 
us our original series. The inverse transform, by the way, 
should be performed across all frequencies, from negative 
infinity to positive infinity. 
 

5. CONCLUSION 

I showed how a Fourier series can be sampled using three 
separate uniform rates that satisfy two irrational relation-
ships, regardless of the size of the sampling rates. I explained 
that, if these relationships are followed, then the terms shared 
by all three resulting transforms will be a full representation 
of the Fourier series. Finally, I gave a filter which can be  
used to obtain the original series from the three transforms. 

 
It should be noted that this paper is entirely theoretical. I did 
not attempt to sample a periodic function with irrational 
rates, mostly because irrational numbers do not work well in 
digital systems. If, however, irrational relationships can be 
approximated, then it may be possible to sample at very low 
rates with an adequate result. I leave this as an exercise for 
future researchers.  
 
Using multiple samplers and approximating a periodic signal 
with a bandwidth greater than half the frequencies of these 
samplers is a problem that might be described as superresolu-
tion. While superresolution is most often used in the context 
of imaging, its applications could reach to other areas as well. 
Someday, perhaps, we will learn to extend ourselves beyond 
the bounds of classical sampling bandwidths, and intelli-
gently explore those areas to which we were once blind. 
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