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ABSTRACT
In recent years digital terrestrial broadcasting systems
have been developed where OFDM signals are used for
data transmission with single frequency network (SFN).
But in a SFN relay station the effect of the coupling
wave from the transmitter to the receiving antenna is
significant and needs to be cancelled. In this paper a
simple adaptive filter method is applied to this problem.
The stationary point of the conventional LMS algorithm
is first derived and its local stability is examined by us-
ing the averaging method. It is found that this algorithm
has a bias. Then a modified algorithm is proposed to re-
move this bias. Simulation results show the validity of
the theoretical findings.

1. INTRODUCTION

Recently there have been some works concerning the
cancellation of the coupling wave at a relay station in
single frequency network for digital terrestrial broad-
casting systems. In [1][2], rather complicated methods
utilizing pilot signals in OFDM system have been pro-
posed for cancellation of this effect. This problem is
similar to that of hearing aids [3][4]. In hearing aids
there is an acoustic feedback path from the speaker to
the microphone and this causes annoying effects such
as whistling and howling. An adaptive filter is used to
model this acoustic feedback path and cancel its effect.
In [4] the stationary point of the conventional LMS al-
gorithm and its local stability condition were derived by
first expressing the algorithm in frequency domain and
then applying the averaging method to it.

In this paper, a simple adaptive filter method is ap-
plied for continuous cancellation of the effect based on
the results obtained for the problem of hearing aids.
First by a method that is more direct than that in [4]
but is still considering the causality constraint, an ex-
plicit expression of the stationary point is derived. Also,
the stability near this point is examined. Similarly to
the situation in hearing aids, the stationary point of the
adaptive filter contains a bias from the transfer function
of the path of the coupling wave. Then, a method to
remove this bias is also proposed. Finally, simulation
results are presented to see the validities of the theoret-
ical findings.

Figure 1: Block diagram of the coupling wave canceller

2. DERIVATION OF THE STATIONARY POINT

Figure 1 shows the block diagram of the coupling wave
canceller with the conventional adaptive filter where
x(n) is the OFDM signal transmitted through a multi-
path channel which is modeled as a zero-mean cyclo-
stationary process [5] andC(z), G(z) denote the trans-
fer functions of the coupling wave path and the ampli-
fier characteristics of the transmitter in the relay station,
respectively. ThoughG(z) is fixed and known,C(z) is
unknown and may be slowly time-varying. To cancel
this effect continuously, an adaptive filter denoted by
W(z) with the conventional LMS algorithm is used. Al-
though this seems to be a typical adaptive filter problem
for noise canceling, actually it is not so. Usual adaptive
filter problems treat cases where the transfer function
to be cancelled is in the feedforward path. But here the
adaptive filter tries to cancel the effect of the coupling
wave in the feedback path. There seem no systematic
treatments for this case in the literature. The signals(n)
in Fig. 1 is expressed as

s(n) = x(n)+C(z)G(z)s(n)−W(z)s(n). (1)

Hence,

s(n) = Q(z)x(n) (2)

with

Q(z) =
1

1− (C(z)G(z)−W(z))
(3)
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where the adaptive filter is treated as time-invariant for
the moment ,z−1 denotes the unit time delay opera-
tor andQ(z) is assumed to be stable, i.e., the zeros of
1−(C(z)G(z)−W(z)) are all inside the unit circle. Oth-
erwise, the system is unstable and we can not treat the
problem properly. The conventional LMS algorithm for
cancellation of the effect of the feedback path is

w(n+1) = w(n)+ µs(n)s∗(n) (4)

with

w(n) = [w0(n) w1(n) . . . wN(n)]T (5)

s(n) = [s(n) s(n−1) . . . s(n−N)]T (6)

W(z) = w∗0 +w∗1z−1 + . . .+w∗Nz−N (7)

wherewi(n) is the i-th weight of the adaptive filter,µ
is the positive step size and′′∗′′ denotes the complex
conjugate. Also, the number of the tap weightsN is to
be selected appropriately. In (4) the error signals(n) is
also used for the input signal. This is a quite unusual
situation in the adaptive filtering literature.

By the averaging method in [6], the stationary point
of the adaptive algorithm in (4) is determined by

E[s(n− i)s∗(n)] = 0 (i = 0,1, . . . ,N). (8)

We should exclude the condition fori = 0 in (8), oth-
erwises(n) = 0 is followed. So , we set in (5) and (7)
that

w0 = 0 (w0(n) = 0). (9)

Also, in (8) the expectation operation is interpreted as
the time average as well as the ensemble average, since
x(n) is a cyclostationary process and the expected value
about this process is periodically time-varying. So we
can treatx(n) as if it is a stationary process with the
spectral densityP(ejω) which is equal to the cyclic
spectrum of cycle frequency 0 [5][7]. Hence, from (2),
(8) can be expressed as

1
2π

∫ 2π

0
e− jiωQ(ejω)P(ejω)Q∗(ejω)dω = 0

(i = 1, . . . ,N). (10)

By the change of variablesz= e− jω , (10) can be rewrit-
ten as

1
2π

∫ 2π

0
zi−1×zQ(z−1)Q̃(z)P(z−1)dω = 0. (11)

where

Q̃(z) =
1

1− (C̃(z)G̃(z)−W̃(z))

with

W̃(z) = w1z−1 + · · ·+wNz−N

and similarly forC̃(z), G̃(z). Although (10) holds for
i = 1, . . . ,N, if N is large enough, it is reasonable to
find a solution that satisfies (11) for alli−1≥ 0. For
this, the integrand afterzi−1 in (10) must be a series of
positive powers ofz. Hence, we have

[zQ(z−1)Q̃(z)P(z−1)]+ = 0 (12)

where[.]+ denotes the extraction of the causality part,
that is, the constant term and negative powers ofz. Let
the spectral factorization ofP(z) be

P(z) = R(z)R̃(z−1)γ2 (13)

where R(z) is of minimum phase and its constant
term is 1. Since from (3),1/Q(z) is a stable
polynomial and1/R(z) is also of minimum phase,
1/(R(z−1)Q(z−1)) is expanded in nonnegative powers
of z and soR(z−1)Q(z−1) can be factored out from[.]+
in (12). So we have

[zR̃(z)Q̃(z)]+ =
[

zR̃(z)
1− (C̃(z)G̃(z)−W̃(z))

]

+
= 0. (14)

To obtainR(z) in (14) we first consider the case where
x(n) is itself an OFDM signal with the data lengthM,
the length of the cyclic prefixL and the total length of
one blockT = M +L. Let xk(n) = x(nT +k) with

xk(n) =
M−1

∑
i=0

si(n)ej2π i(k−L)/M (k = 0, . . . ,T−1) (15)

wheresi(n) is an uncorrelated data sequence with zero
mean and varianceσ2. Then,

E[xk+τ(n)x∗k(n)] = σ2
M−1

∑
i=0

ej2π iτ/M

×
T−1

∑
r=0

δ (r− (k+ τ)) (16)

whereδ (r) = 0 for r 6= 0 and 1 forr = 0 [5]. The cyclic
correlation function with cycle frequency 0 is just the
average of (16) with respect tok from 0 toT−1 and is
given by

p(0;τ) =
σ2

T
(T−|τ|)

M−1

∑
i=0

ej2π iτ/M (|τ | ≤ T)

= 0 (|τ|> T) (17)

So we have

p(0;τ) =
σ2

T
(Tδ (τ)+Lδ (τ−M)+Lδ (τ +M))
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and

P(z) =
LMσ2

T

(
T
L

+zM +z−M
)

(18)

with the spectral factor

R(z) = 1+αz−M (19)

whereα + 1/α = T/L andγ = σ
√

LM/αT. Since in
generalT/L > 2, we can findα such that0 < α < 1.
Now we obtain an explicit solution of (14). Since
R̃(z)Q̃(z) is causal, from (14) it must be some constant
β ∗. Hence, the stationary pointW0(z) satisfies

1− (C(z)G(z)−W0(z)) =
1
β

R(z). (20)

From (7),(9) and (19), if the delayz−1 is included in
G(z), i.e.,

G(z) = z−1G0(z) (21)

thenβ = 1 and

W0(z) = C(z)G(z)+αz−M. (22)

That is, there is a bias termαz−M. Before presenting a
modified algorithm to remove this bias, in the next sec-
tion the local stability near the stationary point is dis-
cussed.

3. THE LOCAL STABILITY PROPERTY

Here we use the averaging or ODE (ordinary differen-
tial equation) method to examine the local stability of
the stationary point (22). The ODE describing the aver-
age behavior of the adaptive algorithm (4) is

ẇ = f(w)

wheref(w) = ( f1(w) . . . fN(w))T with

fi(w) = E[s(n− i)s∗(n)].

The linearized ODE near the stationary pointw0 corre-
sponding toW0(z) in (22) is described as

ẇ =−Φ(w−w0)

where from (8) and (10) the(i,k)th elemet ofΦ is given
by

Φik = − ∂
∂wk

1
2π

∫ 2π

0
ziQ(z−1)Q̃(z)P(z−1)dω|w=w0

=
1

2π

∫ 2π

0
ziQ(z−1)z−kQ̃2(z)P(z−1)dω|w=w0.

(23)

���������������

Figure 2: Block diagram of the unbiased coupling wave
canceller for a multpath channel

In (23) we use the differential rule∂w∗k/∂wk = 0. If Φ+
ΦH is positive definite, the Lyapunov functionV(w) =
||w−w0||2 is decreasing, sincėV(w) ≤ 0 where the
equality holds only atw = w0. Hence,w0 is a locally
stable stationary point. But from (23) for any vector
ξ = [ξ1 . . .ξN]T

ξ H(Φ+ΦH)ξ

=
1

2π

∫ 2π

0
|∑

i

ξiz
−i |2|Q̃(z)|2γαRe(1+αz−M)dω

> 0,No.A (24)

so the local stability is guaranteed.

4. UNBIASED IDENTIFICATION OF THE
FEEDBACK PATH

A simple modification to remove the bias in (22) is pre-
sented. Instead of usings(n) directly in (4), the follow-
ing filtered signal

s′(n) =
1

R(z)
s(n) (25)

is used. This is a whitening operation if at the stationary
pointx(n) = s(n). That is, (25) is written as

s′(n) =−αs′(n−M)+s(n). (26)

Then, (12) is replaced by
[

1

R(z−1)R̃(z)
zQ(z−1)Q̃(z)P(z−1)

]

+
= 0, (27)

so that from (13) the stationary point in this case satis-
fies

[zQ̃(z)]+ =
[

z

1− (C̃(z)G̃(z)−W̃0(z))

]

+
= 0. (28)
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Figure 3: Plots of the cancellation errors using (4)

From thisQ̃(z) must be 1 , so we have

W0(z) = C(z)G(z). (29)

This means that unbiased identification of the feedback
path and continuous cancellation of the effect of the
coupling wave are attained. The local stability near this
point is also established, since corresponding to (24) we
have

ξ H(Φ+ΦH)ξ =
1

2π

∫ 2π

0
|∑

i

ξiz
−i |2P(z−1)dω > 0.

Next we consider the case that the OFDM signal is
transmitted through a multipath channel whose transfer
functionB(z) is of FIR type. Hence,P(z) in this case is
given by

P(z) = B0(z)B̃0(z−1)R(z)R̃(z−1)γ2 (30)

where B0(z) is a stable polynomial satisfying
B0(z)B̃0(z−1) = B(z)B̃(z−1). The filtered signal
s′(n) in (25) is also used in the adaptive filter with the
delay constraint

w0(n) = . . . = wm−1(n) = 0, (31)

then (8) holds fori ≥ m and corresponding to (14) we
have

[
zmB̃0(z)

1− (C̃(z)G̃(z)−W̃(z))

]

+
= 0. (32)

So if m is taken to be larger than the order ofB(z), the
numerator inside[.]+ in (32) is non-causal. Also, if we
set

G(z) = z−mG0(z), (33)
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Figure 4: Plots of the cancellation errors using the al-
gorithm with filtered signals in (25)

Q̃(z) is expanded as1+ z−mqm + . . .. Hence, the sta-
tionary point in this case is also given by (29) and it is
locally stable. Fig. 2 shows the block diagram of the
unbiased coupling wave canceller for a multipath chan-
nel.

In actual situations some tones in the OFDM signal
are not used. For example, if“higher”tonesi = M/2−
∆, . . . ,M/2+∆ are not used [2], this interval is excluded
in the summation in (17). But in this case we cannot
obtain a closed form expression of the spectral factor
like (19) and we need to use a numerical procedure for
spectral factorization , for example, the algorithm in [8]
to obtain the stable polynomialR(z) of orderT.

5. SIMULATION RESULTS

To see the validities of the above theoretical findings,
some preliminary simulation results are presented. The
OFDM signal is generated with BPSK data of ampli-
tude 1 andM = 64, L = 16 (T = 80). In this case
α = 0.2087. Also, we setC(z) = 0.4z−1, G(z) = 2
and the number of the tap weightsN = 64. Fig. 3
shows the plots of the squared cancellation error (SCE)
|x(n)−s(n)|2 versus the iteration numbern when (4) is
used withµ = 0.01. But due to the bias it does not con-
verge to zero as shown. Fig. 4 shows the plots when the
filtered signals′(n) is used in (4) withµ = 0.01. As is
seen from this figure, the cancellation is perfect. Fig. 5
presents the results for the case where the OFDM signal
is transmitted through the channelB(z) = 1+ 1/3z−1

with m= 2. Again, the cancellation is perfect.

6. CONCLUSION

We have presented a method for obtaining the stationary
point of the conventional LMS adaptive filter algorithm
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Figure 5: Plots of the cancellation errors for the signal
through a multipath channel

for cancellation of the effect of the coupling wave in
SFN relay stations. Also, the local stability near this
point has been shown. Based on the above findings a
new algorithm using the whitening operation has been
devised to attain the perfect cancellation. It is a future
work to implement this algorithm in an efficient way
when the length of the whitening filter is very long.
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