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ABSTRACT 
This work concerns quality improvement of auto-
fluorescence retinal images by averaging of non-rigidly reg-
istered images. The necessity of using the elastic spatial 
transformation model is documented as well as the need for 
similarity criterion capable of dealing with the non-
homogenous and variable illumination of retinal images. 
The presented multilevel registration algorithm provides 
parameters of primarily affine and then B-spline free-form 
spatial transformation optimal with respect to the mutual 
information similarity criterion. The registration was tested 
on three modeled image sets of 100 images. The difference 
of artificially introduced pre-deformation displacement field 
and the displacement field found by our algorithm clearly 
showed the ability to compensate for the diverse modeled 
distortions. Further, the registration algorithm was used for 
improving quality of realistic retinal images using averaging 
of registered frames of image sequences. The whole method 
was verified by processing of 16 time series of real images. 
The gain in signal to noise ratio in the averaged registered 
images with respect to individual frame reach the expected 
about 4dB, without introducing a visible blur. The final im-
age was substantially less blurred than the non-registered 
averaged image, which is documented by comparison of the 
autocorrelation functions of both images. 

1. INTRODUCTION 

In the recent decades, correlation between the distribution of 
retinal dye lipofuscin (LF) in the retinal pigment epithelium 
(RPE) and various ophthalmic diseases was proven in several 
studies. According to [1], accumulation of lipofuscin in the 
RPE is associated with degeneration of RPE cells and photo-
receptors and therefore it has a strong diagnostic value. In [2] 
the relation of the size of LF areas to glaucoma development 
was shown.  
Distribution of LF can be measured in vivo by excitation of 
RPE using 488nm blue argon laser and subsequent detection 
of  auto-fluorescence radiation of LF making use of confocal 
scanning laser ophthalmoscope (Heildelberg Retina An-
giograph, HRA) with a front-mounted  broad band pass filter 
with a lower wavelength cutoff of 500 nm excluding re-
flected laser light.  
Unfortunately, since the auto-fluorescence is of low intensity, 
the pure HRA scans are of rather poor signal to noise ratio 

(SNRsingle_frame=22.3dB according to definition (8)) and can 
not be used for reliable determination of the LF distribution 
directly. This situation is caused particularly by comparable 
value of intensity of AF radiation and of thermal noise of the 
used semiconductor detector. Our possibilities to improve the 
situation were limited to posterior data processing, namely 
averaging of time sequences of images of the identical scene. 
We used time series of 9 pure HRA scans provided by the 
system. With respect to the eye motion, some type of flexible 
registration had to be used before averaging. This paper deals 
with the non-rigid multi resolution registration method that 
proved capable of preserving the original spatial resolution in 
averaged images with correspondingly improved SNR. 

2. METHODS 

Image registration can be treated as an optimization problem 
with the goal of finding the spatial mapping that will bring 
the moving image into alignment with the fixed image. It 
can be formalized as finding the optimal parameter vector α0  
of spatial transform Tα, 
  ( ) ( )( )( )0 arg min , ,C f m T= αα

α x x  (1) 

where f is the fixed (reference) image and m is the floating 
image to be registered, which is transformed by Tα to coor-
dinates of the fixed image. The registration quality, corre-
sponding to the transform Tα spatially transforming moving 
image using given parameters α is evaluated by the global 
similarity criterion C. The optimal transformation Tα0 trans-
forms the moving image m into the image m(Tα0(x)), which 
is maximally similar to the fixed image f, thus minimizing 
C.  

2.1 Similarity metric 
Even if the registration problem is mono-modal, the non-
homogenous illumination differing among the images pre-
vents us from choosing a simple similarity criterion such as 
the sum of squared differences or the normalized cross-
correlation. Substantially better results were reached with 
the mutual information (MI) similarity criterion originally 
designed for multi-modal problems. MI is able to overcome 
non-homogenous illumination, which produces unequal in-
tensity of corresponding pixels. Let  pf(f(x)) a pm(m(T(x))) 
are the probabilities of occurrences of brightness values in 
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the images and let pfm(f(x),m(T(x))) be the joint probability, 
then the mutual information can be defined as follows: 
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The choice of MI as the similarity criterion was supported 
by availability of an effective implementation of the crite-
rion using sc. Parzen windowing method [7], which gives us 
access to analytical directional derivatives of the criterion. 
These are necessary for efficient optimization of large scale 
problems like non-rigid registration. 

2.2 Optimizers 
Three optimizers in combination with the multi-resolution 
approach were used in order to find the global extreme of 
the MI similarity criterion: 
• Controlled random search (CRS) is a kind of contrac-

tion process where an initial sample set of points is it-
eratively contracted by replacing the worst point with a 
better one. See [8], [9] for a greater detail. 

• Powell’s method computes step directions for function 
minimization as conjugate directions. See [10] for a 
greater detail. 

• Limited memory Broyden, Fletcher, Goldfarb, 
Shanno method (L-BFGS) is a quasi-Newton optimi-
zation algorithm. It uses function values and gradients 
to build up a picture of the surface to be optimized. See 
[5] for a greater detail. 

2.3 Spatial transformation 
The distortions introduced during the acquisition of HRA 
time sequence are produced either by global eye motion 
between subsequent scans, or because of motion during 
scanning of an individual HRA image. In order to compen-
sate for the distortion, we separated our model of geometric 
distortion into global and local motion parts so that it can be 
formalized as 

  ( ) ( ) ( ), , , .global localT x y T x y T x y= +  (3) 
The global component is expressed by 
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where the world coordinates of the transformed point are 
(x'/w, y'/w). For the case of affine global transform the pa-
rameters α6 = α7 = 0 and α8 = 1. 
The local motion is modeled using B-spline based free-form 
deformation model [4]: 
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nx, ny being the numbers of control (grid) points, Φ are pa-
rameters of the transform defining spatial shift of control 

points (Φ is denoted as α for the optimization), Bl is a cubic 
B-spline basis function. 
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2.4 Optimization strategy 
We used multi-resolution pyramidal approach for the optimi-
zation and different types of optimizers at each level accord-
ing to dimensionality of the optimization problem and to the 
risk of getting stuck in the local optimum. In the first step 
(rough optimization), optimal parameters of translation trans-
form are found first using images sub-sampled into the reso-
lution 256x256 pixels. Then searching for affine transform 
parameters is done making use of results of the previous step. 
In these two steps, controlled random search algorithm 
(CRS) is used as a robust optimization method for this opti-
mization of a low-number of parameters. Further, we assume 
that found parameters are close enough to the global optimal 
parameters so that the similarity metric can be treated as ap-
proximately quadratic form and therefore the Powell method 
of conjugate directions can be used in order to quickly find 
the assumed global optimum. In all these steps, standard mu-
tual information metric evaluated from mutual histogram is 
used. The mutual histogram is directly computed from the 
nearest-neighbor interpolated images (while using CRS) or 
from 2nd-order B-spline interpolated images (at Powell). 
Further (fine optimization), optimal shifts of control points 
of the B-spline spatial transform are sought. In this phase, 
we used L-BFGS optimization algorithm capable of effi-
ciently optimizing high number of parameters. Multi-
resolution was applied in image domain (down-sampling 
images) and in spatial transformation domain (various densi-
ties of grid control points). Thus, optimization is firstly done 
using images with resolution 512x512 with the spatial trans-
formation based on 8x8 control points (128 parameters to 
optimize) and then with spatial transformation based on 
26x26 control point (1352 parameters to optimize). The di-
mensionality of the parametric space is large but the used B-
spline spatial transform has an advantage of the local prop-
erty: one control point affects only its nearest neighborhood 
[3] and consequently, the parameters are partially separable, 
which enables effective optimization.enclosed by square 
brackets (e.g., [2]). 

3. EXPERIMENT 

3.1 Image Data 
Images were acquired using a confocal scanning laser oph-
thalmoscope (Heildelberg Retina Angiograph, HRA) in Fluo-
rescein Angiography (FA) mode. Series of nine images were 
taken for each of 16 patients. Images are of 20°x20° field of 
view and have the spatial resolution 10 µm/pixel. Images 
were acquired in two resolutions: 1024x1024 pixels, 5 
µm/pixel and 512x512, 10 µm/pixel [6]. 
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Figure 1: A - Pre-deformed image (20x20 control points) from the SET III. B - affine registered image. C - coarsely non-rigidly registered 
image (8x8 control points). D - finely non-rigidly registered image (28x28 control points). 
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Figure 2: A – Norm of the displacement field (DFN) of pre-deformation transform (image of Fig. 1, from the SET III); Mean value of the 
norm is 30.235 pixels. B – Norm of the error displacement field (EDFN) after the affine registration; mean(EDFN) = 21.3858px. C – EDFN 
after the coarse non-rigid registration (8x8 control points); mean(EDFN) = 3.206px; D – EDFN after the fine non-rigid registration (28x28 

control points); mean(EDFN) = 2.3866px. See text for the detailed description. 
 

Scan time is about 100ms for one high resolution scan and 
50ms for low resolution.  
Individual images are highly corrupted by noise and by vari-
able non-homogenous illumination; therefore, there is a need 
for preprocessing images before registration. 

3.2 Testing 
We chose a randomly selected HRA high-resolution image 
of the size 1024x1024 pixels and derived a new image set 
containing 100 artificially deformed images. For this pur-
pose, parameters of the affine transform were selected ran-
domly from the constrained parameters space (see Tab.1). 
The local distortion was modeled by shifting nodes of the 
underlying grid containing 20x20 control points. Two image 
sets with different range of the shift were made. In the SET 
I, the maximal range of shift was 15 points in both axes. 
While for the SET II we used the range of 35 pixels. Since 
this model of image distortions is not physically based, a 
spatial model of acquisition was used for creating SET III; 

here, one part of the image was randomly shifted with re-
spect to the other part and small random jitter of the control 
nodes in 10 pixels range was added (see Fig. 1). ). Then, the 
proposed registration algorithm was performed and a dis-
placement vector field (DF) containing the spatial shift of 
each image pixel was calculated from the parameters of the 
spatial transform found by each registration level. The qual-
ity of the final registration was measured by comparing 
these DF and the known DF of pre-deformation. After regis-
tration, the found DF should be inverse to the introduced DF 
when it is ideally compensated. Therefore the error DF was 
computed as the sum of the pre-deformation DF and the 
registration DF which should be ideally zero. The norm of 
this error field was calculated as a measure of the displace-
ment remaining after compensating the pre-deformation by 
the computed registering transform. The mean value of this 
norm across the whole testing set for each registration level 
is given in the table 2. In the figure 2, examples of magni-
tude of pre- and post registration displacement vector field 
for one image from the SET III are given. 

 SET I SET II SET III 
Mean value of the pre-displacement field norm (DF) [px] 32.8585 34.1771 35.0628
Mean value of the affine registered DF norm [px] 33.1668 29.5343 34.9714
Mean value of the coarse registered DF norm [px] 4.6898 10.6015 2.9809 
Mean value of the fine registered DF norm [px] 3.7141 9.0282 2.6642 

Transl. 
[px] 

Scale 
[%] Shear 

Bound x y x y x y 
Upper 35 35 0.7 0.7 0.05 0.05 
Lower -35 -35 -0.7 -0.7 -0.05 -0.05 

Table 2. Mean values of the mean value of error deformation field (DF) norm across 
the whole testing set. DF is a vector field describing spatial shift of each image point. 

Error DF is computed as the sum of the pre-deformation field and the post-
registration field. 

Table 1: Range of affine trans-
form parameters used for creating 

pre-deformed image sets.
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Figure 3: A - Average image without registration. B - Average image with rigid registration is still slightly blurred.  
C - Average image with non-rigid registration. 

 
As can be seen from the Fig 2A, the introduced spatial dis-
tortion has a two clearly separated parts resulting from the 
random shift of one part of the image with respect to the 
other. Fig. 2B shows that affine transform is not able to sub-
stantially compensate the distortion where the distortion on 
right part of the image is suppressed but it is enhanced on 
the left part. The ability of the proposed non-rigid algorithm 
to remove the distortion is visible in Fig 2C,D where dis-
placement errors after two levels of elastic registration are 
depicted. We can see that the displacement error field is al-
most zero except to some location where insufficient infor-
mation was contained in the image so that the MI criterion 
was not able to evaluate the similarity reliably.  

4. RESULTS 

The proposed algorithm was used for aligning 15 time series, 
containing 9 images each. Seven time series were in the reso-
lution of 1024x1024 pixels, others was 512x512 pixels. In all 
cases the proposed algorithm was successful. The quality of   
registration was estimated subjectively by constructing mov-
ies each containing all images from every series and detect-
ing possible misalignment as motion. Another test of quality 
was done when comparing the quality of the averaged im-
ages before and after alignment (see Fig. 3).  

The average signal to noise ratio (SNR) of a single image 
in the sequence was computed and compared to the SNR of 
the image combined without registration, after rigid regis-
tration and after elastic registration (see Table 3). An as-
sumingly constant background area Ω was selected using 
image thresholding and morphological operations, and SNR 
was computed as the ratio between the global signal range 
(maximum minus minimum image) and standard deviation 
over Ω, 

 ( ){ } ( )1020log range stdSNR f f
⎛ ⎞⎧ ⎫

= ⎜ ⎟⎨ ⎬⎜ ⎟Ω⎩ ⎭⎝ ⎠
x x . (8) 

All images were normalized to 256 grey-levels prior to 
SNR computation hence the range was constant and the 
SNR was dependent on noise variation only. The average 
gain in the SNR was around 4dB, which compares well 
with the theoretical optimum 4,77dB for nine totally inde-
pendent images.  

The sharpness of the resulting images was assessed by 

the main lobe width of the 2D autocorrelation function; the 
wider the lobe the less sharp the image.  The criterion is the 
count of discrete autocorrelation-function values higher 
than 3/4 of the function maximum; thus lower value means 
sharper image. 

Image SNR 
[dB] 

Sharpness 
[pts] 

Single frame 23.3454 123.2
No registration 27.1868 5095.8
Rigid 28.3543 2361.4
Elastic 27.8664 1679.9

 
 
 
The results are summarized in the Table 3. Seemingly, the 
single frame (non-combined) image is the sharpest by far; 
however, the result is influenced by a high level of wide-
band noise narrowing substantially the autocorrelation main 
lobe. Thus any comparison is only possible among combined 
images with a similar SNR; comparing those three, it is 
clearly seen that the best result by far is obtained by combin-
ing flexibly registered images of the sequences.   

5. CONCLUSIONS 

A method for improving quality (SNR) of auto fluorescent 
retinal images by their elastic alignment is presented. The 
method is based on maximization of mutual information 
(MI) and consists of low- and high-resolution steps. The low 
resolution step compensates for the global mis-alignment 
caused by patient’s inter-image movements. In order to avoid 
local extremes of MI, the stochastic controlled random search 
optimization routine is used for finding the optimal affine 
transformation model on this level. 
The high-resolution step eliminates the local distortions 
caused by eye movements mainly during single image acqui-
sition using B-spline based free form deformation model and 
efficient quasi-Newton L-FBGS optimizer.  
The algorithm was widely tested on the image sets contain-
ing 100 artificially deformed images. These tests proved the 
necessity for using elastic registration in order to be capable 
of compensating distortions present in the processed retinal 
images. Further, the algorithm was used for alignment of 15 
time-series each containing 9 real patient images. All of these 
images were successfully registered. The quality of the regis-

Table 3: Average signal-to-noise ratio and sharpness measure 
for the image series. 
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tration was evaluated in the averaged images which were less 
noisy than the single frames by an average gain in signal to 
noise ratio about 4dB, as expected. The substantially lower 
blurring of the averaged images after elastic registration 
compared to averaged images without registration or even 
after rigid registration is documented. 
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