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ABSTRACT 
 
A new approach to the frequency reassignment for 
sinusoidal energy localization in the time-frequency plane 
is presented. While the classical reassignment method 
operates statically on each point in the plane, a more 
global approach focuses on the dynamics of the frequency 
reassignment operator along the frequency grid. It is 
shown that the first mixed moment of the frequency 
reassignment operator and linear frequency well describes 
the Discrete-Time Fourier Transform (DTFT) spectral 
peaks in terms of sinusoids and noise. The new method 
eludes spurious artifacts in noisy regions, produced by the 
classical reassignment method randomly clustering noise. 
The proposed method is shown to have very good behavior 
for low SNR and it is computationally efficient. 
 
 
 

1. INTRODUCTION 
 
The detection of time-varying sinusoids buried in noise is 
a milestone for musical signal analysis/synthesis. The basis 
for all the methods is always some time-frequency 
representation (TFR) among which the spectrogram, 
defined as a squared modulus of the Short Time Fourier 
Transform (STFT) is the most prominent. It represents the 
signal’s energy density obtained by averaging the energy 
delimited by a time-frequency analysis window and 
assigning that value to the geometric center of the window. 
As, in general, the energy spectral density is not uniform, 
the spectrogram often provides for a poor localization of 
time-frequency components of the analyzed signal.  

In order to improve the readability of the spectrogram, 
the reassignment method was proposed [1]. It modifies the 
spectrogram by shifting the energy assigned to the 
geometric center of the window to the center of gravity of 
that energy. The new time-frequency coordinates are the 
group delay and instantaneous frequency respectively and 
the shift is determined by the time and frequency 
reassignment operators (tr,ωr). The reassigned spectrogram 
possesses the properties of time and frequency invariance 

and energy conservation and it perfectly localizes pure 
tones, chirps and impulses. In spite of that, the 
reassignment method has some inherent shortcomings. On 
one hand, the presence of broad-band noise provides for a 
non-zero reassignment vector in the regions where there 
are no genuine components. A method of supervised 
reassignment [2] analyzes the statistics of the reassignment 
vector [3] through multi-window STFTs in order to 
determine the presence of true sinusoids. It seems to work 
well for isolated chirp signals but it is computationally 
quite expensive. On the other hand, the frequency 
reassignment operator has been used as a sinusoidal 
estimator [4]. Although it was proven to be very good in 
terms of the Cramer-Rao bound, the bias removal for 
multiple tones shows to be a very difficult task [5].   

 In this paper we present a new approach to sinusoidal 
energy localization by means of the covariance between 
the frequency reassignment operator and linear frequency. 
Unlike the aforementioned methods, neither the 
reassignment spectrogram is calculated nor is the 
frequency reassignment operator used as a sinusoidal 
estimator. We rather investigate into the variation of the 
frequency reassignment operator for a set of points 
clustered within a DTFT modulus peak. This approach, 
being an extension to the reassignment method, brings out 
more information about the signal’s energy spectral 
density. The sinusoidal and noise peaks are shown to have 
respective probability density functions well separated 
along the covariance grid, the fact which relaxes the 
threshold determination conditions. Once the statistics are 
generated, they can be used for sinusoidal detection in 
musical signals. The main advantages of the proposed 
method are absence of spurious artifacts in purely noise 
regions, robustness to low SNR and high computational 
efficiency.  

The reminder of this paper is organized as follows. In 
Section 2 the covariance method is presented and 
evaluated for sinusoidal and noise DTFT peaks. Section 3 
is dedicated to the statistical characterization of sinusoids 
and noise through the covariance method. In Section 4 we 
present some experimental results. Finally, some 
concluding remarks are given in Section 5. 
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2. DESCRIPTION OF THE COVARIANCE 

METHOD 
 
For a DTFT spectral peak of width ∆ω (distance between 
two contiguous local minima), the covariance of the 
frequency reassignment operator ωr and linear frequency ω 
is given as: 

rrr
C ωωωωωω −=  ,                    (1) 

 
where all the averages are calculated with respect to the 
energy spectral density function P(ω) of the windowed 
signal x(n): 
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The covariance Cωωr is the first mixed moment and it 
reflects in a simple way the strength of the dependence. 
Also, it gives a gross indication of where the energy 
density is concentrated with respect to the product ωωr.  
 The reassignment time-frequency operator (tr,ωr) can 
be interpreted as a gradient to the STFT, following the 
steepest-descent direction. That is to say, the reassignment 
operator shows the direction of maxima in the STFT 
modulus. It was shown that for the Gaussian window of 
unit variance this is exactly true while for other analysis 
windows there is an additional “non-analyticity” factor [6]. 
Therefore, ωr can be conceived as a frequency component 
of the STFT gradient vector. By making use of [1] we give 
an alternative definition for ωr:  
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where Xdt(ω) is the DTFT of x(n) multiplied by the time 
derivative of the analysis window and N is the number of 
FFT bins. In expression (3) the modulus can be roughly 
viewed as the gradient intensity and the sine as the 
gradient direction. The parameter a, which modifies the 
original expression from [1], makes (3) more robust 
against ambiguous results which often arise in the 
neighborhood of local minima in |X(ω)|. For a spectral 
peak in general, while ω is linear, we expect ωr to be zero 
at the peak maximum and to increase in both directions in 
some fashion up to the moment when it starts decreasing 
towards zero in the local minima. In the following 
subsections we analyze this behavior for sinusoidal and 
noise peaks and establish the relation among ∆ω, ωr and 
Cωωr. 
 
 
2.1.    Sinusoids 
 
For stationary sinusoids the reassignment shift is 
completely determined by ωr because the center of gravity 

always coincides with the geometric center of the analysis 
window. Therefore, ωr is a linear function of frequency 
around the peak maximum (instantaneous frequency) with 
the slope equal to 1. For non-stationary sinusoids tr ≠ 0, 
i.e. both components of the reassignment shift will 
contribute to the gradient. For linear chirps ωr will still 
vary in a linear fashion, but the slope will depend on the 
modulation strength: the stronger the modulation the less 
pronounced is the slope. This occurs because the center of 
gravity is shifted in both time and frequency from the 
geometric center of the window. For amplitude-modulated 
sinusoids both components of the gradient will be non zero 
but as the instantaneous frequency is constant, ωr will be 
the same as for stationary sinusoids. In presence of mixed 
AM-FM sinusoidal modulations (e.g. vibrato-like 
sinusoids) the slope of ωr will depend on the coupling 
between the modulating waveforms. Fig.1 shows X = 
X(ωωr) and ωr = ωr(ω) for the peaks corresponding to three 
different sinusoidal cases: stationary, FM and AMFM. It is 
interesting to verify that although sinusoidal peaks expand 
in ω in presence of modulation, they have almost the same 
width with respect to the product ωωr. Therefore, the 
energy density concentration (Cωωr) will be determined 
completely by the peak shape along the ωωr axis. As the 
peak shape against ω is already incorporated in ωr through 
the gradient evaluation, we assume that:  
 

( ωωωω ∆= ,rr gC ).                             (4) 
 
If, for example, ωr is fixed then Cωωr will depend 
exclusively on the peak width ∆ω. Let us now apply this 
remark for characterizing noise peaks in the following 
subsection. 
  
 
2.2.    Noise 
 
The peaks from the DTFT of the Gaussian noise must be 
characterized in a probabilistic sense. It is quite difficult to 
evaluate ωr because of the random nature of the spectrum 
modulus. Nevertheless, we can estimate the mean peak 
width and hence evaluate (4) as a most probable value of 
the covariance. Let us recall that the DTFT modulus is 
formed by two independent identically-distributed 
Gaussian variables, namely, real and imaginary spectrum. 
Therefore, the DTFT modulus will have the Rayleigh 
distribution [7] with the variance dependent on the type of 
analysis window while the spectral phase will be 
uniformly distributed in (-π, π). Next, we make use of the 
algorithm that estimates the number of local maxima in the 
envelope of a wide-sense stationary (WSS) band-pass zero 
mean Gaussian random process [8]. Briefly, it states that 
for a WSS band-pass zero mean Gaussian random process 
I(t), written in polar form: 
 
 

( ) ( ) [ ttftRtI ( )]θπ += 02cos  ,                   (5) 
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Figure 1- Representation of three different sinusoidal peaks versus ωωr (left) together with the respective ωr (right); the analysis window 

is Hanning.  
 
 
every maximum of R(t) corresponds to a zero with 
negative      slope in R’(t). Then, the expected number of 
zeros will be: 

Table 1 - Estimated number of maxima per frequency bin for 
different analysis windows 

Window α1 α2 N [max/bin] 
Rectangular 3.29 51.95 0.64 
Bartlett 1.64 14.61 0.48 
Hanning 1.28 9.00 0.43 
Blackman 1.00 5.67 0.38 
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where R’ = R’(to), R’’ = R’’(to) and PR’R’’ (r’, r’’) is the 
joint PDF of those random variables. As the calculus for 
(6) is thoroughly explained in [8] we herein present only 
the final result: 

 
 
 
 

3. PEAK DISTRIBUTIONS 
 

1

2

2
1

α
α

π
≈N , In order to apply the above concepts in musical signal 

analysis, we should first generate statistics for sinusoidal 
and noise peaks. It can be done by calculating the 
covariance for noise and sinusoidal peaks separately and 
building the corresponding distributions. In both cases we 
have first established a signal model, next we have 
calculated the windowed STFT and finally we have 
analyzed the corresponding peaks in the spectrum modulus 
and generated the corresponding distribution. For the noise 
distribution we have applied a Gaussian zero-mean 
amplitude-normalized signal and analyzed all the peaks in 
the STFT modulus. For the sinusoidal distribution we have 
proposed an AM-FM vibrato-like amplitude-normalized 
signal model: 

2
1201 µµµα −=  

31
2
2402 43 µµµµµα −+=  
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2 dffWf I
nn
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where WI(f) is an arbitrary shape power spectrum of I(t). If 
we now substitute in (5) R(t) and θ(t) by the DTFT 
envelope and phase respectively, we obtain a band-pass 
stationary Gaussian process whose WI(f) will be 
completely determined by the type of  analysis window  
(as the phase spectrum will always have the same 
distribution). Consequently, N will be expressed as a 
number of maxima per bin frequency. As (7) does not 
depend on the carrier frequency, we can put fo = 0 and 
calculate N for various analysis windows (the 
corresponding data is given in Table.1). From Table.1 we 
can see that for a given analysis window, the mean peak 
width varies from 1.56 bins (rectangular) to 2.63 bins 
(Blackman), calculated as 1/0.64 and 1/0.43 respectively. 
In a view of that and recalling (4), we expect 
(independently of ωr) the noise peaks to have in general 
considerably smaller Cωωr compared to sinusoids. This 
indeed will be shown in the next section. 
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where Fo = 0.2, FAM = 1/(2L), FFM = FAM /2, AAM = 0.5, AFM 
= 10, L is the size of the analysis window and r(n) is a 
Gaussian additive noise. The sinusoidal distribution was 
generated by collecting only the peaks corresponding to 
the main lobes in the STFT modulus. Let us make a few 
remarks about the sinusoidal signal model. The mixed-
modulation sinusoid is probably the most critical case in 
detection of non-stationary sinusoids. 
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Figure 2 - Normalized distributions for three peak classes: 
           - sinusoidal AMFM with noise (SNRpeak = 6dB) 
           - sinusoidal AMFM without noise 
           - noise; 
           Analysis window is Hanning and a = 10. 
 
 
 
Therefore, it is a good reflection of the reality in musical 
signals. Next, we observe that the size of analysis window 
is coupled to the period of the AM-modulation (and 
consequently to that of the FM). The reason for this lies in 
the assumed sinusoidal spectrum representation as a single 
peak whose properties vary in time. Otherwise the 
modulation sidebands would be resolved and thus the 
sinusoidal peak interpretation should be reformulated. 
Finally, the variance of r(n) is given by the peak 
signal/noise ratio (SNRpeak) rather than through the global 
SNR. We decided on this kind of relation because it seems 
more appropriate for a narrow-band (peak) analysis. The 
distributions have been generated for the Hanning window 
and the parameter a = 10. From Fig.2. we see that in 
absence of r(n) there is no overlap between the 
distributions. Nevertheless, even for the SNRpeak as low as 
6dB the overlap is only approximately 5%. The decision 
threshold will usually be user dependent but more 
sophisticated way should be an automatic adjustment as a 
function of the SNRpeak and a.  
 
 

4. EXPERIMENTAL RESULTS 
 
We have analyzed a number of musical signals but due to 
the paper restrictions we present only one example, being a 
flute vibrato signal from the Utah University database. The 
signal was analyzed by a 2000-sample Hanning window 
and the spectrogram, the reassigned spectrogram and the 
covariance method are shown on Fig.3. The reassigned 
spectrogram has the best sinusoidal energy localization in 
the sinusoidal regions. However, it incorporates a lot of 
artifacts in purely noisy regions. The covariance method 
detects only the sinusoidal components with small errors 

due to the distribution overlap. In addition, it is almost free 
of spurious components in the noise regions.    
 
 

5. CONCLUSIONS 
 

We have shown that the reassignment process can be 
considerably improved by analyzing the time-frequency 
shift vector in a more general context. A set of spectral 
peak parameters like shape, width and frequency 
reassignment operator can be combined through the 
covariance expression for better sinusoidal energy 
localization. The proposed method is immune against 
spurious components in noise regions, it is quite robust to 
the additive noise and easy to implement. The main 
shortcoming lies in the by-hand adjustment of the decision 
threshold. Therefore, the future research will focus on the 
development of an algorithm for automatic threshold 
determination. 
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Figure 3 - Comparison among different time-frequency 
representations for a flute vibrato signal. 
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