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ABSTRACT

This work addresses the problem of deriving FO from distant-
talking speech signals acquired by a microphone network.
The method here proposed exploits the redundancy across
the channels by jointly processing the different signals. To
this purpose, a multi-microphone periodicity function is de-
rived from the magnitude spectrum of all the channels. This
function allows to estimate FO reliably, even under rever-
berant conditions, without the need of any post-processing
or smoothing technique. Experiments, conducted on real
data, showed that the proposed frequency-domain algorithm
is more suitable than other time-domain based ones.

1. INTRODUCTION

An attractive future scenario consists in the development of
new workspaces where the so-called “ambient intelligence”
is realized through a wide usage of sensors (cameras, mi-
crophones, etc.) connected to computers that fade in the
background, largely invisible and significantly less intrusive
to humans.

In the CHIL project, a Distributed Microphone Network
is used, which consists in a generic set of microphones lo-
calized in space without any specific geometry. The anal-
ysis of the resulting acoustic scenario is accomplished by a
multi-channel processing aimed at extracting real-time in-
formation for speaker tracking, acoustic event classification,
and distant-talking speech recognition [1].

One way to pursue all these objectives is that of deriving
a model of the source (e.g. the speaker) from the given multi-
microphone data. In particular, in this work we address the
problem of deriving a robust estimation of the fundamental
frequency FO from the variety of signals recorded through
the microphone network. Speech signals recorded by micro-
phones placed far from a talker are severely degraded by
both background noise and reverberation, which depends on
spatial relationships among the microphones and the talker.

Estimating FO independently for each channel and ap-
plying then majority vote or other fusion based methods
may represent a possible approach. Another way to per-
form FO estimation is to extend to the multi-microphone
case a paradigm that works for a single microphone close-
talking case. A time-domain FO extraction algorithm based
on Weighted Autocorrelation (WAUTOC) [2] was experi-
mented in the past [3, 4], which showed good performance on
a real multi-microphone database of distant-talking speech
sequences reproduced in an office environment. In partic-
ular, the resulting multi-microphone WAUTOC technique
offers the advantage of obtaining better performance than
single microphone based processing, without any assump-
tion or knowledge about the position of the microphones as
well as of the talker. However, a deep analysis of the re-
sults showed that the given time-domain solution was still
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penalized by reverberation effects which introduce phenom-
ena difficult to model and to circumvent by working in the
time-domain. Hence a frequency domain approach was in-
vestigated to better exploit the fine pitch structure that is
common to the given microphone signals. In this work, an
algorithm based on a Multi-microphone Periodicity Func-
tion (MPF) is then introduced and compared to the multi-
microphone WAUTOC and to a multi-microphone extension
of the YIN algorithm [5]. Experimental results show the
advantages of the proposed algorithm.

The paper is organized as follows: Section 2 introduces
the MPF based F0 extraction algorithm; Section 3 and
4 present the multi-microphone YIN and WAUTOC algo-
rithms, respectively; Section 5 and 6 describe the given ex-
perimental set-up and the evaluation criteria; Section 7 re-
ports on the experimental results that were obtained and
Section 8 draws some conclusions and outlines future work.

2. MPF BASED F0 EXTRACTION

The FO extraction algorithm here outlined can be classified
under the frequency-domain category and, in particular, it
includes a processing that resembles that described in [6].

Given the above mentioned Distributed Microphone Net-
work context, the different paths, from the source to each
microphone, are affected differently by the non linear rever-
beration effects, which can enhance some frequencies while
attenuating others. The peaks in the magnitude spectrum
which refer to FO and its harmonics, are thus altered in dy-
namics but preserved in frequency location. Hence, the com-
mon harmonic structure across the different magnitude spec-
tra, can be exploited for better estimating the fundamental
frequency.

Let z;(n) be the downsampled version of the source
speech signal recorded at the i-th microphone of M micro-
phones and w(n) a window function of length L., samples.
For each analysis frame, the windowed signal is zero-padded
to produce the vector X;” of length Ly. An FFT is then
computed and its absolute value is derived as follows:

Si(fx) = |FFT{X"}(k)|, 1<k<Ly. (1)

being fi the frequency bin with index k. Next step is to com-
pute a weighted sum of the real valued normalized functions

Si(fx):

M
S(fk)=;cz--nlgfﬁg%, 131@3%“. (2)

Next, IFFT is applied to obtain the Multi-microphone Peri-
odicity Function 3(7) in the lag-domain
5(r) = IFFT{S([f1, ... )b ()

where the argument of the IFFT is a vector whose Ly ele-
ments are the S(fr) values, with k first ranging from 1 to
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L¢/2 + 1, then decreasing from L /2 to 2, so that the orig-
inal symmetry of S;(fx) is restored. Resulting thus 5(7) a
minimum phase signal, the lag value at which a maximum is
found can be considered the fundamental frequency period
Ty estimated for the analysed frame. After applying inter-
polation to improve lag resolution, s’(7) is obtained and it
holds that

To = argmax{s'(7)}, Tmin <7 < Tax, (4)

where Tmin and Twmax are the minimum and maximum fun-
damental frequency period. To assign the weight values, c;,
first a reference spectrum Sp(fi) is estimated as a product
of channel magnitude spectrum in the following way

TS
se(i) = 1 osicmy ©

=1

and then each weight ¢; is derived basing on the Cauchy-
Schwarz inequality applied to S;(fx) and Sp(fx) considering
them as if they were vectors:

o = Sy Se(fr)Si(fx)
VEE 5200 520

In this way, Sp(fr) will retain information common to the
different channels while rejecting interference showing differ-
ent frequency patterns not common to all channels.

Coefficients ¢; will thus range from 0 to 1, and have been
introduced to represent the reliability of each channel spec-
trum S;(fx), which may depend on the speaker position,
head orientation or on the presence of other sources of noise.
As discussed in Section 5, white noise sequences at different
SNR were added to some given recordings, to confirm the
usefulness of coefficients ¢; in the case when a few micro-
phones are affected by a lower SNR.

L
K:7f+1. (6)

3. A MULTI-MICROPHONE VERSION OF YIN

The YIN algorithm is a time-domain based algorithm derived
from the autocorrelation function and was designed to work
on a single channel source. This algorithm represents one of
the state of the art pitch detection algorithms and was thus
chosen here for comparison purposes.

As described in [5], first the difference function, d;(7), is

derived
di(r) =Y [wi(n) —z:(n + 7)), (7)

being n the time index in the analysis frame and ¢ the mi-
crophone index. The author demonstrates that this function
is less sensitive to changes in signal amplitudes, compared to
the autocorrelation function, thus being less prone to “too
low/too high” F0 estimation errors. In addition, in order to
further reduce errors, the cumulative mean normalized dif-
ference function is derived

/
di(1) = { di(T)/[(1/7) ;:1 di(j)], otherwise, (8)
and, a higher performance is thus reported.

A YIN multi-microphone version is derived here by sim-
ply normalizing the difference function computed for each
microphone signal, d;(7), and then by averaging over all con-
tributes

1 M di T
d]\/[(T) = M Z:; W (9)
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Figure 1: Top: example of a vowel portion extracted from a
close-talk recording. Middle: same speech segment captured
from a distant microphone. Bottom: Difference function
di(T) computed on the close-talk and on the far microphone
signal, and multi-microphone difference function da (1) com-
puted on the whole set of microphones.

The cumulative mean normalized difference function turns
then into

if 7=0,

/! 17
(1) = { da (r)/101/7) (10

;:1 dn(7)], otherwise,

which is then used instead of (8).

Other alternatives had been explored, as for instance av-
eraging the cumulative mean normalized difference function
rather than the difference function. In some preliminary ex-
periments the approach based on equation (10) gave the best
performance.

Please let us note that the proposed extension of YIN
to the multi-microphone case does not represent a ultimate
best YIN-based solution to the given problem. For instance,
a specific work, outside the scope of this paper, should be
conducted to check if a more effective postprocessing can be
conceived in this case (see details on the various steps of the
algorithm in [5]). However, in order to show the plausibility
of the outlined choice (equation 10), Figure 1 shows an ex-
ample that justifies the here investigated multi-microphone
version of YIN . A considerable mismatch can be observed
in the time-domain structure of the close-talk and of the
reverberated far-microphone sequence for the given frame
(the microphone was at 3 meter distance from the speaker).
Then, the figure reports on the comparison between the dif-
ference functions obtained by applying YIN to the close-talk
and to the far microphone signals and by applying the multi-
microphone YIN algorithm to the entire set of 10 far micro-
phone signals. One can note that the minimum, located at
30 samples and clearly missed when processing the far mi-
crophone signal (a value between 40 and 50 was chosen), is
eventually recovered thanks to the effectiveness of the multi-
microphone YIN processing.
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4. WAUTOC-BASED F0 ESTIMATION

In the past, many FO (or pitch) estimation methods were
proposed and evaluated [7, 5, 8]. Some of these methods
derive from the basic formulations of short-term autocorre-
lation and AMDF functions.

The weighted autocorrelation-based one, recently intro-
duced by [2], proved to be particulary robust to noise and
also to doubling or halving period estimation mismatch. The
WAUTOC function is defined as:

SN T i(n)zi(n + )

n=0

wautoc; (1) = )
Yo i) —zin )| +e

(11)

being ¢ the microphone index and e a constant value that
prevents the function from getting too high dynamics or zero-
division condition.

In practice, the denominator of the fraction in (11) corre-
sponds to an AMDF function while the numerator represents
an autocorrelation function.

Since in correspondence of the pitch period the autocor-
relation and the AMDF functions have, respectively, a maxi-
mum and a minimum, WAUTOC-based F0O estimation takes
benefits from the characteristics of both functions. The pitch
period is estimated as

I = arg max{wautoc;(7)}. (12)

As introduced in [4], to extend the WAUTOC-based tech-
nique to the multi-microphone case, a suitable way is that
of averaging the given function over the entire microphone
network, which leads to the computation of

f(r) = Z wautoc; (1), (13)

where M denotes the number of microphone channels.

5. EXPERIMENTAL SET-UP

In order to measure the performance of the proposed algo-
rithm, the Keele database was used [9], which consists of
five male and five female English speakers who pronounced
phonetically balanced sentences. The total duration of the
database is 9 minutes.

Since a multi-microphone database was needed, the
Keele database was reproduced by using a very high quality
dual-concentric (TANNOY 600A) loudspeaker, placed in two
positions (P1 and P2) in order to have different sound prop-
agation situations. Speech sequences were then recorded us-
ing 10 omnidirectional microphones and a multi-microphone
platform operating at 20 kHz and 16 bit!.

The office is 3 m x 7 m wide and 3 m high and is char-
acterized by a reverberation time Tgo ~ 0.35s. As shown in
Figure 2, adjacent microphones were from 0.2 to 2 meters far
each other. During recordings there were no people in the
room, and the only source of noise was the computer fan.

6. FO EVALUATION CRITERIA

An FO estimation algorithm can be evaluated in different
ways according to the application purposes. One of the most
common ways is that of using a laringograph as reference
from which a reliable “ground-truth” estimate can be derived
[6]. Generally, the reference FO is extracted automatically
from the laringograph output and then manually checked

IThis multi-microphone database can be downloaded at:
http://shine.itc.it
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Figure 2: The office with ten microphones and the loud-
speaker placed in two positions, one left to right and the other
30 degrees top right. The room is quiet, except for a computer
fan marked with a *.

(visually) in order to avoid discrepancies in irregular voiced
portions.

To be more accurate in our tests, an analysis step of 1ms
was chosen and, given that the original labels were derived
every 10ms, a new reference FO was derived using the laryn-
gograph signals included in the Keele database. This was
accomplished by pre-filtering these signals with a high-pass
filter to eliminate a slowly varying bias present, probably due
to movement of the speaker during original recordings. Then
the Praat program [10] was used to obtain the new references
and the result was manually checked to correct errors.

FO candidates are evaluated only for analysis frames
manually labeled as “voiced”.

A frequently used method to compare the performance
between different algorithms is to compute the Gross Error
Rate (GER). This is calculated considering the number of
FO estimates which differ by more than a certain percent-
age from the laringograph reference values. In this work a
threshold of 20% is used for the GER estimation. The reason
for this choice is that, if a pitch estimate satisfies this crite-
ria, then several techniques can be used to refine its value,

[5].

7. EXPERIMENTAL RESULTS

In the following experiments, FO estimates were obtained us-
ing an analysis step of 1 ms and an analysis window of 30
ms length for the WAUTOC and the YIN algorithms and of
60 ms length (Hamming window) for the MPF based algo-
rithm. These different window durations were determined by
preliminary experiments aimed to optimize each algorithm
performance.

A first experiment was conducted to assess the effec-
tiveness of introducing the weights ¢; in (2) and results are
showed in Figure 3. Microphones 1, 2 and 3 were chosen to
form a subset, from which two other database replica were
derived adding white noise with SNR of 0 and -5 dB to one
of the microphone signals.

The multi-microphone WAUTOC and YIN as well as the
MPF based algorithm were tested under those three condi-
tions. In particular MPF was run twice, first with all weights
¢; set to 1, then applying equation (6). The results showed
the effectiveness of the latter setting and, in practice, the ca-
pability of the proposed algorithm to exploit input channels
with a better signal quality.

Figure 3 shows the gross error rate provided by the three
algorithms in their single-microphone version as well as in
their multi-microphone version. The whole set of micro-
phone signals were considered. From those results, one can
observe that YIN is the best algorithm when applied to the
close-talk speech signal. However, in the multi-microphone
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Figure 3: Gross error rates obtained by the multi-microphone
version of each algorithm under different noisy conditions.
Only three microphones were used and white noise was added
to channel 8 at different SNRs.

case, MPF performs better than the two other algorithms.
A similar trend was obtained for position P2.

Moreover, as observed in our former activity on the de-
velopment of multi-microphone WAUTOC, applying to far
microphone signals any of the algorithms in single-channel
fashion always led to a performance worse than that obtained
using the MPF based algorithm.

8. CONCLUSIONS AND FUTURE WORK

This paper addressed the problem of estimating the funda-
mental frequency on distant-talking speech, given a set of
microphones distributed in space.

Although signals are degraded by noise and reverberation
(typical of an office environment), it is shown that the use of
the proposed MPF algorithm allows to obtain a remarkable
reduction in gross error rates, which represents a promising
starting point for future research activities.

It is also worth noting that applying the MPF-based al-
gorithm blindly is straightforward; on the other hand, apply-
ing the single microphone version of the described algorithms
to the output of each far acoustic sensor would in any case
require a further processing to select the most reliable FO
among the resulting candidates.

Next steps include the application of MPF algorithm to
the analysis of larger databases of meetings and lectures,
collected and annotated under the CHIL project. The ob-
jective is to exploit the resulting FO estimates as well as
the MPF function as features for acoustic event detection
and classification, speech activity detection, and eventually
distant-talking ASR.
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