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ABSTRACT 
Due to translational registration, traditional super-resolution re-
constructions can apply only on the sequences that have simple 
translation motion. This paper reviews the super-resolution algo-
rithm in these two decades and proposes a novel super-resolution 
reconstruction that that can apply on real sequences or complex 
motion sequences. The proposed super-resolution reconstruction 
uses a high accuracy registration algorithm, the fast affine block-
based registration [42], in the stochastic regularization technique 
of Bayesian MAP estimation used to compensate the missing meas-
urement information. The experimental results show that the pro-
posed reconstruction can apply on real sequence such as Suzie, 
Mobile Calendar and Foreman. 

1. INTRODUCTION 
Typically, theoretical and practical limitations constrain the 
achievable resolution of any devices. SR (Super-Resolution) image 
reconstruction algorithms investigate the relative motion informa-
tion between multiple LR (Low Resolution) images (or a video 
sequence) and increase the spatial resolution by fusing them into a 
single frame. In doing so, it also removes the effect of possible 
blurring and noise in the LR images [7], [20], [22], [37]. Recent 
work relates this problem to restoration theory [34]. As such, the 
problem is shown to be an inverse problem, where an unknown 
image is to be reconstructed, based on measurements related to it 
through linear operators and additive noise. This linear relation is 
composed of geometric warp, blur and decimation operations. The 
super-resolution problem is modelled by using sparse matrices and 
analyzed from many reconstruction methods [20] such as the Non-
uniform Interpolation, Frequency Domain, Maximum-Likelihood 
(ML), Maximum A-Posteriori (MAP), and Projection Onto Convex 
Sets (POCS).  
The super-resolution restoration idea was first presented by T. S. 
Huang and R. Y. Tsan [39] in 1984. They used the frequency do-
main approach to demonstrate the ability to reconstruct one im-
proved resolution image from several downsampled noise-free 
versions of it, based on the spatial aliasing effect. A frequency 
domain recursive algorithm for the restoration of super-resolution 
images from noisy and blurred measurements is proposed by S. P. 
Kim, N. K. Bose, and H. M. Valenzuela [31] in 1990. The algo-
rithm using a weighted recursive least squares algorithm, is based 
on sequential estimation theory in the frequency-wavenumber do-
main, to achieve simultaneous improvement in signal-to-noise ratio 
and resolution from available registered sequence of low-resolution 
noisy frames. In [32], S. P. Kim and Wen-Yu Su also incorporated 
explicitly the deblurring computation into the high-resolution im-
age reconstruction process in 1993 because separate deblurring of 
input frames would introduce the undesirable phase and high 

wavenumber distortions in the DFT of those frames. Although the 
frequency domain methods are intuitively simple and computation-
ally cheap, the observation model is restricted to only global trans-
lational motion and LSI blur. Due to the lack of data correlation in 
the frequency domain, it is also difficult to apply the spatial domain 
a priori knowledge for regularization. The POCS formulation of the 
SR reconstruction was first suggested by Stark and Oskoui [37] in 
1987. Their method was extended by Tekalp [37] to include obser-
vation noise in 1992. Although the advantage of POCS is that it is 
simple and can utilize a convenient inclusion of a priori informa-
tion, these methods have the disadvantages of nonuniqueness of 
solution, slow convergence, and a high computational cost. 
Due to MRF (Markov Random Field) that can model the image 
characteristic [29-30] especially on image texture, their super-
resolution approach using MAP estimator (or the Regularized ML 
estimator), with the HMRF (Huber-Markov Random Field) prior 
was presented by Richard R. Schultz and Robert L. Stevenson [27-
28] in 1996. The blur of the measured images is assumed to be 
simple averaging, and the measurements additive noise is assumed 
to be independent and identically distributed (i.i.d.) Gaussian vec-
tor.  
M. Elad and A. Feuer [16] proposed the hybrid method combining 
the ML and nonellipsoid constraints for the super-resolution resto-
ration in 1997 and the adaptive filtering approach for the super-
resolution restoration in 1999 [17]. Later, the special case of super-
resolution restoration (where the warps are pure translations, the 
blur is space invariant and the same for all the images, and the 
noise is white) are proposed for a fast super-resolution restoration 
in 2001 [18]. A. J. Patti and Y. Altunbasak proposed [2] a super-
resolution reconstruction using ML estimator with POCS-based 
regularization in 2001 and Y. Altunbasak, A. J. Patti, and R. M. 
Mersereau [45] proposed a super-resolution restoration for the 
MPEG sequences in 2002. They proposed a motion-compensated, 
transform-domain super-resolution procedure that directly incorpo-
rates the transform-domain quantization information by working 
with the compressed bit stream. Later, B. K. Gunturk and Y. Al-
tunbasak and R. M. Mersereau [3] proposed a ML super-resolution 
with regularization based on compression quantization, additive 
noise and image prior information in 2004.   
S. Baker and T. Kanade [33] proposed another super-resolution 
algorithm (hallucination or recognition-based super-resolution) in 
2002 that attempts to recognize local features in the low-resolution 
image and then enhances their resolution in an appropriate manner. 
Due to the training data base, this algorithm performance depends 
on the image type (such as face or character) and this algorithm is 
not robust enough to be sued in typical surveillance video. J. Sun, 
N. N. Zheng, H. Tao and H. Y. Shum [12] proposed hallucination 
super-resolution (for single image) using regularization ML with 
primal sketches as the basic recognition elements in 2003. D. Rajan 
and S. Chaudhuri [7-8] proposed super-resolution approach, based 
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on ML with MRF regularization, to simultaneously estimate the 
depth map and the focused image of a scene, both at a super-
resolution from its defocused observed images in 2003. P. Vande-
walle, Sabine S. Susstrunk and M. Vetterli [24] propose a fast su-
per-resolution reconstruction based on a non-uniform interpolation 
using and a frequency domain registration in 2004. Although this 
method has low computational load and can use in the real-time 
system, the degradation models are limited. The alternate super-
resolution approach, L1 Norm minimization and robust regulariza-
tion based on a Bilateral Total Variance, was presented by S. Farsiu 
and M. Dirk Robinson [34] in 2004. This approach performance is 
superior to what proposed earlier in [16], [17] and [18] because this 
approach proper to deal with different data and noise models and 
this approach has fast convergence. 
All the above super-resolution restoration methods [2], [3], [7], 
[12], [16], [17], [18], [20], [22], [24], [27], [28], [29], [30], [31], 
[32], [33], [34], [37], [39], [45] are restricted to global or local 
uniform translational displacement between the measured images 
or sequences therefore, unfortunately, the pure translation model 
can not represent the real complex motion effectively therefore 
image super-resolution applications can apply only on the se-
quences that have simple translation motion. 
This paper proposed a novel super-resolution framework that can 
apply on real sequences or complex motion sequences. Due to the 
limitation of the translation model, we present a high accuracy 
registration algorithm, the fast affine block-based registration [42] 
that can model the high complex motion. This proposed registra-
tion algorithm divides the current frame into overlapping blocks 
then it searches all possible affine modelled blocks within a search 
windows in the reference frame to find the best matched blocks. 
The affine parameter of the best matched block is called an affine 
motion parameter or affine motion vector. To reduce the tremen-
dous computation cost due to the large frame-size, a modified three 
step search (M3SS) is used to estimate the affine parameter. The 
proposed super-resolution is based on L2 norm minimization with 
three different regularizations: Laplacian, MRF and BTV. There-
fore, the super-resolution reconstruction can apply on real se-
quences or complex motion sequences such as the standard se-
quence (Foreman, Carphone or Suzie). 
The organization of this paper is as follows. Section II introduces 
briefly the proposed affine block-based registration that can im-
prove the accuracy performance of translational registration and a 
modified three step search (M3SS) that is developed to alleviate the 
heavy computations of Full Search (FS). Section III introduces the 
super-resolution using the affine block-based registration and a 
Bayesian approach with BTV regularization function as a prior 
function. Section IV outlines the proposed solution and presents the 
comparative experimental results. Finally, Section V provides the 
summary and conclusion. 

2. INTRODUCTION OF SUPER-RESOLUTION  
This section starts our presentation with a brief description of the 
problem and the model used. Consider a sequence of images 

( ){ }Y t , each image is of M M×  pixels, as our measured data. We 

wish to generate a sequence ( ){ }X t  of images of higher resolution, 

each image of ( )L L L M× >  pixels and of improved quality. For 

convenience of notation, all images will be presented as vector, 
ordered column-wise lexicographically. Namely, we have 
( ) 2MtY R∈  and ( ) 2LtX R∈ . At each time instant   we assume that 

the two images are related via the following equation. 
  ( ) ( ) ( )Y t D H X t N t= ⋅ ⋅ +  (1) 

where ( )X t  is blurred, decimated (namely, down sampled) and 

contaminated by additive noise, giving ( )Y t . H  is the blur matrix, 

a space and time invariant, D  the decimation matrix is depend on 
the camera characteristic thus D  is assumed constant, and ( )N t  is 

a zero mean Gaussian noise.  For traditional image sequence, the 
sequence ( ){ }X t  satisfied the following equation: 

  ( ) ( ) ( ) ( )1X t F t X t V t= ⋅ − +  (2) 

 
The matrix ( )F t  stands for the geometric warp between the images 

( )X t  and ( )1X t − , and ( )V t  is the system noise. 

3. AFFINE BLOCK-BASED REGISTRATION [42] 
Typically, the translational block-based registration can detect only 
pure translational motion along the image plane and fails to con-
sider any complex motions that arise due to rotation, zooming, etc. 
An efficient way of detecting several complex motions is by using 
the combination of the block-base technique and affine model. In 
this section, we propose a scheme for estimating affine block-based 
motion vectors suitable for several complex motions. The estima-
tion can be separated to 2 stages. At the first stage of the estimation 
algorithm, the current and reference frames are divides into over-
lapping blocks (16x16). This stage is divides the image into small 
areas in order to detect and estimate the local motions. The advan-
tage of this stage is to reduce the computational load and to support 
parallel calculation. Next, the second stage computes the affine 
motion vector of each block between the current and reference 
frame using M3SS that will be discussed in the later section. 
Due to a very high computational load in affine motion vector es-
timation, the M3SS is proposed to reduce that load. The 3SS 
(Three Step Search) is one of the popular fast algorithms used in 
the translational registration therefore this paper develops the 3SS, 
that can estimate 2 motion parameters as in (3), to be M3SS that 
can estimate 6 motion parameters as in (4). 

 
, ( , )x tranmv x y a=  and 

, ( , )y tranmv x y b=  (3) 

 
, ( , )x affinemv x y ax by c= + +  and 

, ( , )y affinemv x y dx ey f= + +   (4) 

For the 7x7 displacement window (translation deformation) and 

20±  degree (rotation, extraction or expansion deformation), the 
proposed M3SS algorithm utilizes a search pattern with 

72936 =  check points on a search window in the first step as 
shown in (5).  Next, the center of the search window is then shifted 
to the point with minimum Block Distortion Measure (BDM) and 
the search window size of the next step is reduce to the half of the 
previous step. Finally, the search algorithm processes until the 
search window is reduce to (6). The M3SS algorithm for each 
block is summarized as follows. 
Step 1:  A minimum BDM (Block Distortion Measure) point is 
found from a   check point pattern at the center of the searching area 
as shown in (5) 
 
[ ], , , , , [ 0.16, 0.16, 2 0.16, 0.16, 2]a b c d e f = ± ± ± ± ± ±  (5) 

Step 2:  The search window is reduced to half in all dimensions of 
the previous search window and a minimum BDM (Block Distor-
tion Measure) point is found from a 729 check point pattern at the 
center of the new searching area. It will go to step 3. 
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Step 3:  If the search window is equal to (6) then the process stop 
otherwise go to step 2. 
 
[ ], , , , , [ 0.01, 0.01, 0.125 0.01, 0.01, 0.125]a b c d e f = ± ± ± ± ± ±  

   (6) 
 (The criterion for parameter selection in this paper was to choose 
parameters which produce most PSNR results for 4 standard se-
quences, Foreman, Carphone, Suzie and Stefan that have different 
BG and FG motion characteristic. Therefore, to ensure fairness, 
each experiment was repeated several times with different parame-
ters and the best result of experiments was chosen [42]). 
From the table 1, the total number of the M3SS check points is fixed 
at 3.65E+3. Compared with the classical block-based estimation 
method (translation block-based estimation method) at 0.25 pixel 
accuracy and w=9, the total number of the M3SS check points has 
more computational load the classical approach about 3 times. 

4. THE PROPOSED SUPER-RESOLUTION 

The problem of estimating the high-resolution image X  given the 

low-resolution sequence { }Y  is ill-posed since a number of solu-

tions could satisfy the video sequences observation model con-
straints. A well posed problem will be formulated using the sto-
chastic regularization technique of Bayesian MAP estimation, re-
sulting in a constrained optimization problem with a unique mini-
mum. The gradient descent method will be used to compute the 
estimate. 
The MAP estimate maximizes the a-posteriori probability 

{ }( )XΡ Y  given by:  

 

{ }( ){ } { }( ) ( )
{ }( )MAP

ˆ arg max arg max
X X

X X
X X

⎧ ⎫Ρ Ρ⎪ ⎪= Ρ = ⎨ ⎬
Ρ⎪ ⎪⎩ ⎭

Y
Y

Y
 (7) 

 
where the maximum independent of  { }( )Ρ Y , yields 

 
{ }( ) ( ){ }MAP

ˆ arg max
X

X X X= Ρ ΡY  (8) 

 
Taking the logarithm of Equation (8), yield  

 
{ }( )( ) ( )( ){ }MAP

ˆ arg max log log
X

X X X= Ρ + ΡY  (9) 

It remains to determine the form of the likelihood function 
{ }( )XΡ Y  and the prior ( )XΡ . 

 

{ }( ) ( )Noise
1

N

k k k k
k

X Y D H F X
=

⎛ ⎞
Ρ = Ρ −⎜ ⎟

⎝ ⎠
∑Y      (10) 

{ }( )
( )

( ) ( )

2

1

1 1

1

2

1exp
2

NMM

TN N

k kk k k k k k
k k

X
K

Y D H F X K Y D H F X

π

−

= =

⎛ ⎞
⎜ ⎟Ρ = ×⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑

Y  (11) 

 
From a statistic perspective, ( )XΡ  regularization function is incor-

porated as a priori knowledge about the solution. A robust regular-
izer called bilateral-TV (BTV) was introduced in [34] therefore the 
prior ( )XΡ  of the BTV is 

 

( )
0

0

1 exp
P P

m l l m
x y

l P mp

l m

X X S S X
k

α +

=− =

+ ≥

⎛ ⎞
⎜ ⎟

Ρ = − −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑  (12) 

 
where matrices (operators), l

xS  and m
yS  shift X  by l  and m  pixels 

in horizontal and vertical directions respectively, presenting several 
scales of derivatives. The scalar weight α , 0 1α< < , is applied to 
give a spatially decaying effect to the summation of the regulariza-
tion terms [34].  Combining the BTV regularization, we propose the 
solution of the super-resolution problem as follows: 
Substituting the likelihood term in Equation (11) and the prior in 
Equation (12) into Equation (9) and removing constants independ-
ent off gives the objective function 
 

( )
( )

( ) ( ) ( ) 2

2

0

0

ArgMin
N

P P
m l l mX t k N x y

l P m

l m

D H G k X t Y k

X t
X S S Xα +

=−

=− =

+ ≥

⎧ ⎫⎛ ⎞⋅ ⋅ ⋅ −⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎛ ⎞⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟

⎜ ⎟+ −⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

∑
∑∑

 (13) 

 
We use steepest descent to find the solution to this minimization 
problem (13): 

 
( ) ( )

( )

( ) ( )

1

1

0

0

ˆ ˆ

ˆ

ˆ ˆsign

n n

N
T T T

k nk k k k k k
k

P P
m l l m l m

x y x y
l P m

l m

X t X t

F H D Y D H F X

I S S X S S X
β

λ α

+

=

+

=− =

+ ≥

=

⎧ ⎫⎛ ⎞
− −⎪ ⎪⎜ ⎟

⎝ ⎠⎪ ⎪
⎪ ⎪⎛ ⎞+ ⋅⎨ ⎬

⎜ ⎟⎪ ⎪− ⋅ −⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑ ∑

(14) 

 
where β  is a scalar defining the step size in the direction of the 
gradient and λ  is a regularization factor. ( )F k  is a forward affine 

registration and ( )TF k  is a inverse affine registration. Fig. 1 is the 

block diagram representation of (12). First, the current estimate of 
HR frame ( )tX  is warped by affine block-based motion matrix. 

Second, the warped HR frame ( ) ( )F t tX  are divides into over-

lapping-blocks ( ( )X t ) and each block are blurred and decimated. 

For each block,  ( )Y t  will be compared to the warped, blurred, 

and decimated current estimate of HR frame ( )X t . Third, the 

Table I. Performance Comparison of Registration Method 
 

Block-Based BMA Search 

Registration Method (Block Matching Algorithm) Points 

Affine FS (Full Search) 1.29E+09 

  M3SS 3.65E+03 

Translation FS (Full Search : 0.25 Pixel) 1.09E+03 

  FS (Full Search : 1 Pixel) 2.56E+02 
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residues of the comparison are upsampling ( TD ), deblured ( TH ) 
and comprised to entire images. Fourth, entire residue images are 
warped by inverse affine block-based motion matrix. Finally, the 
all warped residue images and BTV regularization are combined 
and the result is used to update the SR image. 

5. EXPERIMENTAL RESULT 
This section presents the experiments and results obtained by the 
super-resolution method using affine block-based registration using 
M3SS. These experiments are implemented in MATLAB and they 
perform results using Suzie sequence that is a QCIF format 
(176x144). The blurred and noisy LR frame (88x72) is generated 
for the original Foreman sequence at SNR = 25 dB. The block size 
is fixed at 8x8 (16x16 for overlapping block) and the search win-
dow w=7 for affine block-based registration. Fig. 2(c) shows the 
Suzie (Frame 40) result of applying our BTV regularization crite-
rion with the following parameters 0.1λ = , =2P , =0.7α , 

0.5β =  and 2N =  (or frame 38, 39, 40, 41 and 42). The 
result shows that Fig. 2(c) is more sharp edges and less noise than 
the LR image in Fig. 2(b). (The criterion for parameter selection in 
this paper was to choose parameters which produce visually most 
appealing results. Therefore, to ensure fairness, each experiment 
was repeated several times with different parameters and the best 
result of each experiment was chosen [34]). 
Fig. 3(c) shows the Mobile Calendar (Frame 10) result of applying 
our BTV regularization criterion with the following parameters, 

0.1λ = , =2P ,  =0.7α , 0.5β =  and 2N =   (or frame 
8, 9, 10, 11 and 12). The result shows that Fig. 3(c) is more sharp 
edges and less noise than the LR image in Fig. 3(b). 

Fig. 4(c) shows the Foreman (Frame 110) result of applying our 
BTV regularization criterion with the following parameters, 

0.1λ = , =2P , =0.7α , 1β =  and 2N =   (or frame 
108, 109, 110, 111 and 112). The result shows that Fig. 4(c) is more 
sharp edges and less noise than the LR image in Fig. 4(b). 

6. CONCLUSION  
In this paper, we propose an alternate approach using a novel im-
age registration, Affine Block-Based Registration, and a Bayesian 
approach with BTV regularization function as a prior function.  
Experimental results conducted clearly that the proposed algorithm 
can apply on the general sequence such as Suzie, Mobile Calendar 
and Foreman and the proposed algorithm can be improved re-
markably.  
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