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ABSTRACT
This paper deals with a new SAR Processor based on a sub-
space detector used for Man Made Target(MMT) detection.
This new algorithm aims at using new models, different from
the isotropic point one commonly used in SAR processors.
The implementation of Subspace Detector SAR (SDSAR) al-
gorithm is described along the paper and a simple example
shows the interest of using models matched to the target.

1. INTRODUCTION

The detection of Man Made Targets embedded in noise, clut-
ter or speckle with a SAR system is a current issue which oc-
cupies both the signal processing and the SAR communities.
Most techniques used for target detection are postprocessing
treatments of SAR images (eg polarimetry...) but very few
focus on a preprocessing treatment, operating directly on the
received signal. SAR images can be formed with algorithms
[1], which are generally based on the isotropic point model.
This model assumes that any target can be seen as a single
or a set of isotropic points. This assumption is true if the
element to image can be considered as a random volume.
Scattering properties of an element generally depend on pa-
rameters such as its size, orientation and shape. This leads to
consider a target as a set of elements, whose scattering prop-
erties will be used. If we consider a model suited to MMT,
we would certainly be able to improve detection.
For this purpose, we propose to develop a new SAR imag-
ing algorithm by considering an MMT as a set of canonical
elements: as an example, an MMT can be seen as a set of
plates. To develop such an algorithm, a first idea could be
to implement a filter bank matched to different configura-
tions of the chosen model [2] (for example, filters matched
to any orientation of plate). This kind of algorithm suffers
from several drawbacks. First, many filters are required to
cover all existing configurations. Then it would not be robust
enough to configurations which have not been forseen. How-
ever, we show in this paper that these problems can be over-
come when the set of signals scattered by the chosen model,
whatever its configuration (orientation), belongs to a low di-
mensional subspace. Therefore, we develop an imaging al-
gorithm based on a subspace detector. Each represented pixel
of the final image is based on an evaluation of an appropriate
Generalized Likelihood Ratio (GLR) [3]. This algorithm has
the advantage of taking the scattering properties of the target
into account while using a low number of filters.

The paper is organized as follows. We develop in the

first part of the paper a SAR algorithm based on the isotropic
point model deduced from detection theory [3]. We call it the
Classical SAR (CSAR) algorithm . We show that this algo-
rithm is equivalent to a well known algorithm, the Time Do-
main Correlation Algorithm (TDCA) [1]. In a second part,
we present the new Subspace Detector SAR (SDSAR) algo-
rithm which generalizes the CSAR algorithm to any kind of
model. Finally, we consider that a MMT is a set of metal-
lic plates and we particularize the SDSAR algorithm to that
case. We compare, as a prelimenary study on detection per-
formances, the ability of SDSAR and CSAR algorithms for
detection of metallic plates of different orientations and sizes
in a white Gaussian noise. In simulations, the SDSAR al-
gorithm shows important improvement in terms of probabil-
ity of detection compared to CSAR. Moreover interesting ro-
bustness properties to plate orientation and size are obtained.
The following convention is adopted: italic indicates a scalar
quantity, lower case boldface indicates a vector quantity and
upper case boldface a matrix. T denotes the tranpose operator
and H the transpose conjugate.

2. CLASSICAL SAR PROCESSOR (CSAR)

2.1 SAR Data Acquisition
We consider a strip map SAR configuration: an airborne an-
tenna is moving along an axis u. A signal e(t) is emitted
towards the scene at every ui position of the antenna. The dis-
tance between two successive positions is δu. The received
signal at every ui position is zi(t). We make the “stop and
go” assumption: the antenna is not moving when emitting
and receiving. e and zi denote the sampled signal vectors
associated to e(t) and zi(t).

2.2 The CSAR Detection Problem
Let z be the concatenation of n vectors zi:

z ∈ C
M, z =

[

zT
1 zT

2 . . . zT
n
]T (1)

For each (x,y) position to image we consider the two hypoth-
esis H0 and H1. The hypothesis H0 refers to the case where
the signal z, received at every position ui, is a white Gaus-
sian noise n, N(0,σ 2I). H1 refers to the case where z is the
signal scattered by an isotropic point at (x,y), r plus a white
Gaussian noise n, N(0,σ 2I). r is the concatenation of the
eτx,y,ui

:

r =
[

eT
τx,y,u1

eT
τx,y,u2

. . . eT
τx,y,un

]T
(2)



where eτx,y,ui
is the emitted signal delayed of

τx,y,ui .Quantity τx,y,ui is the round trip time between the
emitter at ui and the position (x,y). The detection problem
may thus be written:

{

H0 : z = n
H1 : z = α r+n

(3)

where α is an unknown complex attenuation coefficient. Let
p(z|H1) be the probability density fonction (pdf) of z for hy-
pothesis H1 and p(z|H0) the pdf of z for hypothesis H0:

p(z|H1) =
1

πMσ2M exp
−(z−αr)H(z−αr)

σ2 (4)

and

p(z|H0) =
1

πMσ2M exp
−zHz

σ2 (5)

2.3 Implementation of the CSAR Detector
To solve the previous problem, we build a Neyman-Pearson
detector based on a Generalized Likelihood Ratio Test
(GLRT):

TC =
maxα∈C p(z|H1)

p(z|H0)

H0
≶
H1

η (6)

If we consider lnTC we have from (4) and (5):

lnTC =
‖z‖2

σ2 −min
α∈C

‖z−αr‖2

σ2 (7)

=
‖rHz‖2

σ2‖r‖2 (8)

We choose to build the SAR image by setting the intensity
I(x,y) of pixel at (x,y) to:

I(x,y) = ln(TC) =
‖rHz‖2

σ2‖r‖2 (9)

Let IT DCA(x,y) be the intensity of the pixel (x,y) given by the
Time Domain Correlation Algorithm (TDCA). According to
[1] and using (9) we have:

IT DCA(x,y) = ‖rHz‖ =
I(x,y)1/2

µ
(10)

with µ = 1
σ 2‖r‖2 .

3. SAR PROCESSOR BASED ON A SUBSPACE
DETECTOR

As seen in the previous part, the CSAR algorithm considers
that a target is a set of isotropic points. As we have seen,
none of the scattering properties of the target is taken into
account in this model. We propose to develop a SAR pro-
cessor based on a model which describes MMT in a more
realistic way. We choose to build a SAR processor based on
a subspace detector. The chosen subspace corresponds to the
subspace of the model used to describe the target (as plate,
cylinder, dipole or dihedral subspace). We call it the SDSAR
(Subspace Detector SAR) algorithm.

3.1 SDSAR Detection Problem
For each position (x,y) to image, we consider two hypotheses
H0 and H1. H0 refers to the case where the received signal, z,
is a white Gaussian noise n, N(0,σ 2I). H1 corresponds to the
case where the received signal is the signal scattered by the
chosen model, with an unknown configuration, plus n. From
now on, we consider that the different configurations of the
chosen model correspond to its various possible orientations
(θ , φ ). The angles (θ , φ ) are defined in figure 2.

q

q
j

j

Figure 1: Definition of the orientations θ and φ in the case
of a plate

The detection problem is written as follows:
{

H0 : z = n
H1 : z = α y(θ ,φ)+n

(11)

where

y(θ ,φ) =
[

y1(θ ,φ)T y2(θ ,φ)T . . . yn(θ ,φ)T
]T

(12)
and yk(θ ,φ) is the signal received at position uk, scattered
by the chosen model at (x,y) with an unknown orientation θ
and φ . The quantity α is an unknown complex attenuation
coefficient. If the set spanned by y(θ ,φ) at (x,y) when (θ ,
φ )∈[0,π ]2, belongs to a subspace < Hxy > of dimension D,
we can rewrite the detection problem as:

{

H0 : z = n
H1 : z = Hxyλ +n

(13)

where Hxy is an orthonormal basis (M ×D) associated to
the “subspace model” < Hxy >, and λ is the unknown corre-
sponding (D×1) coordinate vector of the signal αy(θ ,φ).

3.2 Implementation of the SDSAR algorithm
3.2.1 Implementation of the Subspace Detector

To solve the previous detection problem we use once again
the GLRT:

TSD =
maxλ∈CD p(z|H1)

p(z|H0)

H0
≶
H1

η (14)

where

p(z|H1) =
1

πMσ2M exp
−(z−Hxyλ )H(z−Hxyλ )

σ2 (15)

and

p(z|H0) =
1

πMσ2M exp
−zHz

σ2 (16)



If we consider lnTSD, we obtain:

lnTSD =
‖z‖2

σ2 −
minλ∈CD ‖z−Hxyλ‖2

σ2 (17)

=
‖Hxy

Hz‖2

σ2 (18)

As previously, we set the intensity of the pixel at position
(x,y), to I(x,y):

I(x,y) = lnTSD =
‖Hxy

Hz‖2

σ2 (19)

If we compare equation (9) corresponding to CSAR and
equation (19) corresponding to SDSAR, we notice that
CSAR is a particular case of SDSAR where the basis matrix
Hxy is vector r

‖r‖ . This basis describes the 1-dimensional
subspace which contains signal scattered by isotropic points.
The CSAR algorithm is thus an SDSAR algorithm where the
chosen model is the isotropic point model.

3.2.2 Implementation of the Subspace Basis Hxy of <
Hxy >

To compute (19), we need to know a basis Hxy of subspace
< Hxy >. For a given position (x,y), < Hxy > is defined as
the subspace which contains the set of the signals scattered
by the chosen model at position (x,y) whatever its orientation
(θ ,φ). Let us consider matrix Sxy defined as:

Sxy = [y(θ1,φ1) y(θ1,φ2) . . . y(θN ,φN)] (20)

Each column of Sxy corresponds to the signal y(θi,φ j), scat-
tered by the chosen model at (x,y) with orientation (θi,φ j).
(θi,φ j) are chosen in [0,π ]2. We apply a Singular Value De-
composition (SVD) to Sxy:

Sxy = UΣVH (21)

where U and V are two orthonormal matrices and Σ a diag-
onal matrix containing the singular values of Sxy.
Hxy is given by the D first columns of U associated to the
D first non null singular values. We generally do not use all
the D first columns, as a lot of singular values are very small
compared to others. To determine the best subspace basis of
rank D′ (D′ ≤ D), we look for the basis H′

xy which mini-
mizes the following criterion C(H′

xy):

C(H′
xy) = ∑

i, j
‖y(θi,φ j)‖

2 −‖H′
xy

H
y(θi,φ j)‖

2 (22)

According to [4], if H′
xy is made of the D′ first columns

of U, the criterion C(H′
xy) is minimized. The SDSAR al-

gorithm is applied using the basis H′
xy instead of Hxy: its

performances will depend on the chosen rank D′.

3.2.3 Implementation of the SDSAR Algorithm

The SDSAR algorithm is summarized in the following
scheme:

pixel at (x,y)

��
�

�

�

Generation of Matrix Sxy

��

SVD computation of Sxy

��

Generation of H′
xy (choice of D′)

��

I(x,y) =
‖H′

xy

H
z‖2

σ 2
�� ��
�� ��zoo

4. APPLICATION OF THE SDSAR ALGORITHM
WITH A METALLIC PLATE MODEL

In this part, we assume that a MMT is a set of metallic plates
of different sizes and orientations (as in [5]). We apply the
metallic plate model to the SDSAR algorithm: each y(θi,φ j)
defined in (12) corresponds to the signal scattered by a plate
at a given position (x,y) with orientation (θi,φ j). Our aim
in this section is to compare the performances of CSAR and
SDSAR algorithms for plates detection. First we define the
parameters of the SAR simulation, then we compare the per-
formances of the two algorithms for size-matched and non
size-matched plates configurations.

4.1 Simulation parameters
• Code: The code used for y(θi,φ j) computation is based

on the physical optics approximation, which requires that
plates dimensions are larger than the wavelength. The
scattering matrix of a perfectly conducting plate used to
compute scattered signals is derived from [6].

• Size: the target model is a 1 m×2 m metallic plate. The
subspace detector is matched to this plate size.The plate
subspace generated is a low dimensional one as very few
singular values of the signal matrix have a significant in-
tensity (as shown in figure 2).

• Configuration of the scene: A plate is located in the mid-
dle of the scene to image, with an orientation (θ ,φ ).

• Emitted chirp: The central frequency of the chirp is 400
MHz with a bandwidth of 100 MHz.

4.2 SAR imaging and detection of a size matched plate
In this part, the target is a plate which has the same size as
the model used to build H′

xy. We first compare the images
formed by the two CSAR and SDSAR algorithms, then we
compare Detection Probability (DP) versus Signal to white
Gaussian Noise Ratio (SNR) for a given False Alarm Proba-
bility (FAP).
• Image formation:

As a first example, we consider the configuration described in
figure (3.a) where θ = 0 and φ = −π/4. Figure 4 represents
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Figure 2: Singular values of a 1× 2 m metallic plate signal
matrix

the SAR images obtained with CSAR (a) and SDSAR (b,
c, d) algorithms. The three SDSAR images correspond to
SDSAR of rank 2, 6 and 10 (their corresponding base H′

xy

are made with the 2, 6 and 10 first column vectors of U.
The magnitude given by colorbars is σ 2I(x,y). We notice
that the spot corresponding to the CSAR case is thinner than
the three others, and is located exactly at the phase center
of the plate. The spot corresponding to the SDSAR cases
becomes larger and larger with the value of the chosen rank.
We also observe that the top magnitude from rank 2 to rank
10 is weakly increasing. A high rank subspace (higher than
2) hardly improves the magnitude of the pick corresponding
to the plate phase center.
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Figure 3: a: plate with orientation θ = 0 and φ = −π/4, b:
plate m with θ = π/2 and φ = π/6 and c: plate m with θ = 0
and φ = 0

We consider now the scene described in figure 3.b (θ =
π/2 and φ = π/6). We obtain figure 5 defined as figure 4.
The CSAR algorithm image is a spot spread around the plate
phase center. SDSAR of rank 2 provides a similar image.
The spot is starting to focus on the phase center of the plate
for rank 6 and is perfectly focused for rank 10. We also notice
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Figure 4: a: CSAR image of a 1×2 m plate with orientation
θ = 0 and φ = −π/4. b, c, d: SDSAR of rank 2, 6 and 10

that the top magnitude of the image from rank 2 to rank 10
is greatly improving. In this case, using high rank SDSAR
algorithms improves the precision of localisation accuracy
and significantly increases the magnitude of the pick placed
at the center of phase of the plate.
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Figure 5: a: CSAR image of a 1×2 m plate with orientation
θ = π/2 and φ = π/6. b, c, d: SDSAR of rank 2, 6 and 10

• Probability of detection versus SNR:
We study in this part the PD versus SNR for a given False

Alarm Probability (FAP) of 10−5. FAP corresponds to a χ2

test statistics with 2D′ degree of freedom and PD to a non
central χ2 with 2D′ degree of freedom and with a non central

parameter of maxx,y
‖H′

xy

H
y‖2

σ 2 . Figures 6 represents CSAR
and rank 2, 4, 6, 8 and 10 SDSAR performances for the
three configurations given in figure 3. As a reference, we
also plot the curve corresponding to the optimal case, when
the the plate orientation is known. We first notice that for
each case, the SDSAR algorithm gives better performances
than the CSAR one, from 0 to 5 dB (except in figure 6.a for



SDSAR of rank 8 and 10, where performances are the same
than the CSAR, which is a particular case). We also notice
that from one case to another, the best performances are not
obtained for the same SDSAR rank. The highest PD versus
SNR refering to the configuration given in figure 3.a is for
rank 2 SDSAR, in figure 3.b, rank 10 and in figure 3.c, rank
4. The first singular vectors in matrix H′

xy are matched to
cases where the plate scatters a lot of energy in the synthetic
aperture direction (as in figure 3.a). The other vectors, as-
sociated to lower singular values, correspond to cases where
the plate scatters lower energy in the direction of the syn-
thetic aperture (the worst case here is given in figure3.b). We
can also notice by comparing performances in figure 6a., b.
and c. that for SDSAR of rank 8 and 10, performances are
nearly the same in the three configurations, whereas lower
rank SDSAR performances highly variate. We can conclude
that the SDSAR algorithm is robust to orientation for an im-
portant enough SDSAR rank (rank 8 and 10).
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Figure 6: Detection Probability vs SNR, for FAP=10−5, for
a 1×2 m plate with orientation a: θ = 0 and φ = −π/4, b:
θ = π/2 and φ = π/6 and c: θ = 0 and φ = 0

4.3 SAR detection of a non-size matched plate
This part deals with the performances of the CSAR and SD-
SAR algorithms for detecting a metallic plate which size dif-
fers from the one chosen for the SDSAR model. We choose
a 2× 3 m plate as target and we keep a the 1× 2 m plate
as model. Performances in figure 7 refers to cases given in
figure 3.a, b. and c. In these three cases, we can observe an
important performance improvements between SDSAR and
CSAR algorithms: 2 to 5 dB gain in the first case, 0 to 3 dB
in the second one and 0 to 4 dB in the last case. We also
notice that in all cases, SDSAR of higher ranks give better
perfomances than lower ones (except for the first case where
rank 4 and 6 are a little better). If we compare these results
to the previous paragraph, where the plate used as taget was
“size matched”, same performances are once again noticed
for SDSAR of high ranks (8 and 10). We can conclude that
the SDSAR algorithm is robust to significant plate size vari-
ations for a high enough rank SDSAR.
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Figure 7: Detection Probability vs SNR, for FAP=10−5, for
a 2×3 m plate with orientation a: θ = 0 and φ = −π/4, b:
θ = π/2 and φ = π/6 and c: θ = 0 and φ = 0

5. CONCLUSION

We described in the paper the SDSAR algorithm, a new SAR
processor based on a subspace detector. It aims at using other
models than the isotropic one. These new models give a suit-
able description of Man Made Targets that increase detec-
tion. For plates detection applications, we noticed that, when
using a plate as model, the SDSAR algorithm significantly
improves detection performances compare to the CSAR one.
The SDSAR algorithm shows robustness properties to plate
orientation and size variations. These interesting properties
make us optimistic for future applications on more complex
“plate made” targets.
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