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ABSTRACT

This paper describes a signal processing model of gene
expression microarray experiments using oligonucleotide
technologies. The objective is to estimate the expression
transcript concentrations modeled as an analog signal vec-
tor. This vector is received via a cascade of two noisy chan-
nels that model noise (uncertainty) before, during, and af-
ter hybridization. The second channel is also mixing since
transcript-probe hybridization is not perfectly specific. The
gene expression levels are estimated based on a second-order
statistical model that incorporates biological, sample prepa-
ration, hybridization, and optical detection noises. A key fea-
ture is the explicit modeling of gene-specific and non-specific
hybridization in which both have deterministic and random
components. The model is applied to the processing of probe
pairs as used in Affymetrix arrays, and comparison of cur-
rently used methods with the optimum Gauss-Markov esti-
mator. In general, the estimation performance is a function
of the hybridization noise characteristics, probe set design
and number of experimental replicates, with implications for
integrated design of the experimental process.

1. INTRODUCTION

DNA array technologies enable the simultaneous estimation
of the expression levels of multiple genes in biological tis-
sues. Now about 10 years old, microarrays can measure the
expression of tens of thousands of genes and have become
the central measurement tool for experimental research in
disciplines ranging from systems biology to drug discovery.
Every living cell produces mRNA (messenger RNA) coded
by the DNA of its genes in the process of transcription; this
mRNA is then translated into proteins which orchestrate the
myriad functions of the cell.

In a microarray experiment, the mRNA transcripts are ex-
tracted from a biological sample and converted through a se-
ries of steps to complementary RNA (cRNA) that is washed
over the microarray chip. The chip has numerous probe sites
(often called spots or wells), each containing a DNA se-
quence associated with a particular gene. The key step is
called hybridization, wherein probes bind preferentially with
their target transcripts to form double-helix duplexes. The
cRNA molecules are labeled with a reporter molecule that
fluoresces upon illumination with a laser from a scanning
confocal microscope; a probe’s fluorescence signal is an in-
creasing function of the amount of cRNA that has become
chemically bound, or hybridized, to the probe’s DNA. The
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optical signals are read by the microscope and processed to
form estimates of gene activity. Every step of this experi-
mental process can introduce significant noise, and the ex-
pense of microarray assays implies small sample sizes (often
only three).

There are several approaches for synthesis of the DNA
for a gene and deposition at a site on the microarray. One of
the more popular techniques is based on depositing short (20
to 60 nucleotide) DNA sequences at each probe. A gene is as-
sociated with multiple probes, and the processing combines
the optical signals from the probeset—all the probes for a
gene—to compute the expression level estimate. At least two
types of arrays are in mass production: inkjet-spotted arrays
(Agilent) and chemically-deposited arrays (Affymetrix). Re-
cently, researchers have prototyped an ink-jet device for in-
laboratory synthesis of custom arrays [1], greatly expanding
possibilities for the design of probes, probe sets, and arrays
that are optimized for specific experiments.

Numerous approaches have been developed for the pro-
cessing of the data, but most efforts have been characterized
by the construction and linking of various ad hoc statisti-
cal approaches. Roughly, three separate steps are performed
[2]. First, background/signal adjustment is performed to re-
move optical scanning artifacts and hybridization noise. The
second step is called normalization and attempts to remove
systematic variations between arrays. The final “probe sum-
marization” step combines the resulting probe signals for a
gene to estimate its expression level. Due to the widespread
use of Affymetrix arrays, most efforts have focused on av-
erages of probe signals or certain differences [3]. A signal
processing framework similar in spirit to the one in this pa-
per uses a binary matrix to model the presence or absence
of oligos to study the design of arrays with with multi-target
probes [4]. A mixed linear model that emphasizes differen-
tial experimental effects (e.g., cell lines and treatments) is
presented in [5]; however, transcript/probe interaction ef-
fects are considered fixed, and random effects are assumed
normal. Other related work includes stochastic molecular
models of the hybridization analysis for cDNA arrays [6],
and iterative methods for joint estimation of hybridization
parameters and expression levels [7, 8]. The latter techniques
are based on blind models; however, most experiments are
sample-starved, and significant progress is being made in the
determination of hybridization parameters from theory and
controlled experiments [9, 10].

In this paper, we develop an integrated signal processing
model that captures key aspects of the process from experi-
ment to transcript level estimates, with focus on characteri-
zation of the signal of interest and sources of noise and inter-
ference. Our experiment model admits the coloring of bio-
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logical noise by the hybridization. The hybridization model
explicitly captures deterministic and random components of
binding affinity and cross-talk between probe signals; from
this, we show that the performance of several existing ap-
proaches is unnecessarily sensitive to cross-hybridization ef-
fects. We also describe a simple non-parametric estimator
that does not require inference of distributions and provides
reliability information that can exploited in higher-level in-
ference tools, e.g., for the inference of network structure. The
next section describes the model. Optimum processing of the
data is outlined in Section 3, followed by its application to
processing of probe pairs from Affymetrix GeneChip arrays,
and concluding remarks.

2. OLIGO MICROARRAY EXPRESSION
EXPERIMENT MODEL

Let the biological sample contain target transcriptsk, k =
1, . . . ,K with molar concentrations{xk}K

k=1. HereK is the
number of targets, or genes to be considered. The goal is to
estimate thexk’s from the optical signals when the array is
scanned.

2.1 Biological Noise

The first measurement uncertainty is biological noise. This
noise is significant in microarray experiments [11], and arises
from several sources. Genotypic noise is caused by genomic
variations within the sampling population, (e.g., if the sample
uses littermates), while variation among genetically identical
individuals is called phenotypic noise. One source of phe-
notypic noise is alternative splicing, in which pre-mRNA is
edited by cutting and pasting operations after transcription
but before translation. Other noise is due to differences (of
up to 35%) in response that may be caused by variations in a
cell’s dynamically available resources [12]. These noises can
vary from target to target, depending on, for example, spa-
tial variation of expression in the sample. They are normally
not separable in microarray experiments, but their character-
ization is an active research area spurred by new techniques
to measure responses of individual cells [13]. Their sum is
modeled as a zero-mean random variableβk for each target
transcript. Hence the signal plus biological noise for target
k is xk +βk. Clearly, these noises will be correlated between
genes (e.g., in operons); this is modeled with a covariance
matrix Σβ .

Samples are prepared using RNA extraction, reverse
transcription to cDNA, transcription to fluorescence-labeled
cRNA, and preparation of the hybridization cocktail. The
accompanying sample preparation noise appears to be small
compared with other noises [14], and will be neglected here
for convenience. However, these procedures may also add
bias, resulting in inter-chip variations. Other inter-chip dif-
ferences may result from differences an array manufacturing
or processing. Thus there has been a large amount of ef-
fort in normalization to allow accurate comparisons between
arrays [15], from simple mean adjustments to distribution-
matching via quantile equalization. Moreover, the use of
controls (transcripts with complementary probes that are
spiked into the cocktail in controlled concentrations) can fur-
ther quantify these variations. In the following, we will as-
sume that such normalization has been performed.

2.2 Hybridization

In oligonucleotide arrays, each target transcript is specified
by a set of probe molecules corresponding to the gene, with
each probe molecule a string of 20 to 60 nucleotides. For
example, in the Affymetrix GeneChip design, probes are 25
nucleotides long, and there are 32 to 40 probes per target
transcript. Each probe on the chip consists of hundreds or
thousands of identical nucleotide sequences.

The log signal present at probei of probesetj due to
signal from transcriptk, caused by the binding of a tran-
script fragment to the probe to form a duplex sequence, can
be modeled as a bilinear function of (1) the log component
concentration up to saturation of the probe site and (2) the
transcript-level hybridization affinity of the two sequences
[16, 9, 4]. Thus the expression signal at probej of probeset
i due to genek is h(i, j;k)xk, where the coefficienth(i, j; i)
models what is often called gene-specific binding (GSB).
The hybridization affinity is a non-trivial function of the
length and composition of the probe sequences and the fluo-
rescent labeling of the cRNA [17, 18, 9]. In practice, these
parameters can be estimated using sequence-based methods,
or computations based on the free energy changes of duplex
formation [10, 7]. With these definitions, the gene-specific
signal at probe(i, j) can be written assi j = h(i, j; i)[xi +βi ].

Hybridization is subject to errors from at least two
sources. First, in oligo arrays the cRNA is chemically frag-
mented into oligo segments to provide better affinity to the
probes, since the binding of full-length transcripts to the at-
tached probe oligos would be very inefficient. The fragmen-
tation results in the cutting of the transcripts at random lo-
cations. The second source is binding of non-target tran-
script fragments, referred to as non-specific binding. We
model these errors using a deterministic and random com-
ponent for each probe signal. The deterministic component
captures inter-transcript interference (ITI), the contributions
to the signal viah(i, j;k)xk, k 6= i from all non-target tran-
scripts in the sample. Both gene-specific binding and ITI are
noisy, so the hybridization noise is modeled as an additive
random vectorη (whose number of elements is equal to the
total number of probes) with covariance matrixΣη .

2.3 Scanning and Chip-Induced Effects

The final component of the model is optical noise due to laser
scanning and intensity measurement. It is considered addi-
tive and zero-mean, and can be effectively removed by back-
ground adjustment [19]. Moreover, it is a trivial extension of
the model and will subsequently be absorbed intoη , so the
complete model is (1).

2.4 Experiment Model

At this point, the composite signal at probe(i, j) can be writ-
ten as

si j =
K

∑
k=1

h(i, j;k)[xk +βk]+ηi j , (1)

or in matrix form (stacking probe sets and probes within sets)
as

s= H[x+β ]+η , (2)

where we callH the hybridization matrix.
Summarizing, the signal vectorx is first corrupted by bi-

ological noise. This is followed by hybridization, where the
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Fig. 1. Block diagram of microarray experiment model. The
transcript expression vector (signal) vectorx is corrupted by
biological noiseβ , followed by hybridization, with mixing
by the hybridization matrixH and corruption byη .

signal and biological noise components are mixed, and hy-
bridization noise is added (Figure 1). Hence the model is
structured as two cascaded communication channels: the first
adds noise, while the second also causes interference. Note
that the ITI for probej of target genei is ∑k6=i h(i, j;k)[xk +
βk]+ηi j .

Due to the low signal-to-noise ratio of microarray exper-
iments, experimental protocols call for multiple replicates of
the biological samples. Hence the signal for probe seti of
replicater is the vector

s(r)
i = H i [(x(r) +β

(r)
i ]+η

(r)
i .

The composite signal for all probe sets and all replicates can
be formed from stacking the outputs, again yielding (1).

2.5 Hybridization Model Inference

In microarray experiments, the expression measurement of
over 10,000 genes is not uncommon, making experimental
determination ofh(i, j;k) for every probe in every probe set
for every gene impossible. However, the developing the-
ory of nucleotide duplex formation may provide theoreti-
cal models. In addition, genes that cause significant inter-
transcript interference can be found using BLAST searches
[7]. Both considerations motivate a modified model. The set
of known genesG is partitioned into two sets:G (1), com-
posed of genes of interest and those causing them significant
ITI, andG (2) = G −G (1), which includes all other genes (in-
cluding unknown genes). This imposes corresponding par-
titions of x = [x(1)′ : x(2)′]′ (where (·)′ denotes transpose),

β = [β (1)′ : β
(2)′]′, andH = [H(1) : H(2)], so that

s=
2

∑
l=1

H(l)[x(l) +β
(l)]+η .

Consider target genei. With h(1)
i denoting columni of H(1),

the signal is

si = h(1)
i x(1)

i + ∑
k6=i

h(1)
k x(1)

k + γ +η ,

where first term is the signal from the target, the second term
is the explicitly modeled fixed ITI, andγ models the com-
bined effect of the remaining ITI and biological noises.

3. EXPRESSION LEVEL ESTIMATION

The (log) linear model (2) can be simplified. By collecting
the (colored) noise asn = Hβ + η with mean zero and co-
variance matrixΣn = HΣβ H ′ +Σβ , the model becomes

s= Hx+n.

Notice that no assumptions have been made on the distri-
bution of either the signal or the noise. This is in con-
trast to parametric approaches that assume normal [5], log-
normal [15], or gamma [16] distributions. In practice,x is
often treated as deterministic unknown; in this case the op-
timum estimator (in terms of the estimation error variance
for each transcript) is the Gauss-Markov (generalized least-
squares) estimator

x̂GM = ΣGMH ′Σ−1
n s,

which is unbiased with error covariance

ΣGM = (H ′Σ−1
n H)−1. (3)

This estimator only requires knowledge of first and second
moments, which are easier to estimate from controlled ex-
periments than joint distributions. Note that one is free to fit
any distribution to these statistics in subsequent processing,
if desired.

4. OPTIMUM PROBE-PAIR PROCESSING

Probe sets in the Affymetrix GeneChip arrays consist of 16-
20 pairs of probes; each pair consists of a PM probe that
is perfectly matched to a nucleotide sequence found in the
target gene, and a MM (mismatch) probe that differs from
the PM probe at one site in the middle of the sequence. The
MM probe was designed to provide a measure of non-specific
binding signal that could be subtracted from the PM signal
[19]. However, it is common for the MM signal to exceed
the PM signal in a significant number of probe pairs, so a
number of techniques have been developed that use only the
PM signal (see the review in [3]).

To explore this, we simplify the model (1) to a single
probe pair. In correspondence with other models, we ignore
biological noise and include ITI in the hybridization noise,
whose covariance matrix is

Ση = σ
2
[

1 ρ

ρ 1

]
, (4)

whereσ2 is the hybridization noise variance andρ is the
cross-hybridization noise correlation coefficient. This model
of hybridization noise is consistent with results [18, 2]
demonstrating that cross-hybridization is noisy, but is neither
uncorrelated nor identical between probes. We note that for
convenience we have assumed that the hybridization noise
variances are equal; however, all results can be generalized
to arbitrary variances. For example, a probe’s noise variance
could be a function of its specific and non-specific binding
affinities.

Letting the hybridization affinities for the PM and MM
probes beh1 andh2 respectively, the probe pair signal is

s=
[

h1
h2

]
x+η . (5)
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From (3), the error variance of Gauss-Markov estimator ˆxGM
is

σ
2
GM =

σ2(1−ρ2)
h2

1 +h2
2−2ρh1h2

. (6)

The PM and PM− MM signals areh1x+η and(h1−h2)x+
η1−η2, respectively, so

σ
2
P =

σ2

h2
1

, σ
2
P−M =

2σ2(1−ρ)
(h1−h2)2 , (7)

for the unbiased PM and PM− MM estimators ˆxP, x̂P−M.
We use the unbiased versions of all three estimators; this

requires that the hybridization affinities and the hybridization
noise covariance matrix are known from prior controlled ex-
periments. Their error variances are compared as a function
of ρ in Figure 2. In the figure, we have set the ratio of bind-
ing affinities h2/h1 = 0.7 based on experimental results in
[19, 16]. Note that this ratio can be considered the relative
binding efficiency of the mismatch and perfect-match probes.
Results are normalized (σ2

P = 1), and the noise power is kept
constant and equal for both probes, so that increasing noise
coherence results in greater squared-sum noise power.
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Fig. 2. Error variance performance of probe-pair process-
ing estimators as a function of cross-hybridization correla-
tion ρ: unbiased perfect match ˆxP (solid horizontal line);
Gauss-Markov ˆxGM (solid curve); unbiased PM− MM x̂P−M
(dashed); biased PM− MM x̂B:(P−M) (dash-dot).

Estimators based on PM− MM implicitly assume per-
fect noise coherence and thus have large error variance for
all but large values ofρ. For example, the model of [20] is
(using our nomenclature)si = r +hix+ni for the PM (i = 1)
and MM (i = 2) probes, wherer is a baseline response. The
resulting PM− MM signal is

(h1−h2)x+ ε,

whereε = n1−n2 is re-coined as a single random variable so
that hybridization noise covariance effects are not accounted
for. The relative superiority of ˆxP over x̂P−M for low cross-
hybridization covariances as seen from Figure 2 may explain
why PM-only summaries (e.g., [21]) have been preferred for
low expression levels. However, PM-only summaries discard
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Fig. 3. Gain in dB of Gauss-Markov estimator vs. unbiased
PM estimator as a function ofh2/h1 andρ.

useful information from the MM probe that is helpful at low
and high noise coherence levels. From a signal processing
perspective, both the PM− MM and PM estimators are de-
ficient. In contrast, the Gauss-Markov estimator optimally
combines both probe signals for any value of noise coher-
ence. By treating the PM and MM signals as equals (except
for differences in affinity), it also handles cases where the the
MM signal exceeds the PM signal. The cross-hybridization
noise correlation coefficient must be known, but only up to
its second-order statistics.

Figure 2 also shows that the performance of the biased
PM− MM estimatorx̂B:(P−M) is significantly better than that
for x̂(P−M). This variance/bias (precision/accuracy) trade-
off, often used to qualitatively compare probe summarization
approaches, is now simply a function of the parameterized
probe pair model (4),(5).

Figure 3 showsσ2
P

σ2
GM

, the gain in precision (inverse error

variance) in dB of the Gauss-Markov estimator relative to the
unbiased PM estimator. In particular, it shows the gain for
two special cases of interest. First, the gain in precision over
when only the PM probe is used is given by (from (6),(7))

h2 = 0 :
σ2

P

σ2
GM

=
1

(1−ρ2)
,

showing how PM-only designs fail to exploit knowledge of
the cross-hybridization noise correlation. Another case of
interest is whenh2 = h1, i.e., when both probes have the same
hybridization affinities. In this case we have

h2 = h1 :
σ2

P

σ2
GM

=
2

(1+ρ)
,

demonstrating that the Gauss-Markov estimator has a gain
of up to 3 dB. This quantifies the true cost of the combina-
tion of current Affymetrix probe-pair designs and PM-only
summaries. Specifically, neglecting 50% of the probes–the
MM probes—in Affymetrix chips costs up to 3 dB in error
variance.
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5. CONCLUSIONS

The primary aim of this paper is to describe a signal process-
ing model that captures complete microarray experiments.
The introduction of a statistical model for biological noise as
well as hybridization and cross-hybridization effects places
the comparison of different approaches on a unified foun-
dation, and the explicit modeling of biological noise may
help explain experimental results. The hybridization matrix
provides the connection between the probe/array design and
the performance of target transcript estimation. The ability
to jointly characterize deterministic and random hybridiza-
tion effects, along with new custom oligo array technolo-
gies [1], opens the door to new approaches for joint exper-
iment and array design [4]. For example, instead of using
a fixed PM/MM pair design for all probes, probesets could
be designed to achieve error variance specifications that vary
depending on interest in the target transcript.
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