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ABSTRACT
In this paper, the average of the steady state excess mean
square error (ASEMSE) of the least mean kurtosis (LMK)
adaptive algorithm is theoretically derived. It is done by ap-
plying the energy conservation behavior of adaptive filters
and it is based on the n-th order correlations and cumulants
theory. By doing so, the behavior of the recently proposed
LMK can be predicted, so that it can be widely used. The
behavior is compared with the various adaptive algorithms.
Our study shows that it is possible to adjust the performance
of the LMK. When the step size µ is carefully selected, the
performance of the LMK can outperform the LMS.

1. INTRODUCTION

Traditionally, the coefficient of the adaptive filter � is ad-
justed using the least mean square (LMS) algorithm. The
LMS algorithm is largely used in real-time adaptive filtering
applications for communications, control engineering, pro-
cessing of biological signals and more recently active noise
and vibration controls [1]. It is very popular due to its sim-
plicity. In the LMS, the coefficient of the adaptive filter is
adjusted so that the square of the error e

�
n � between the out-

put of the adaptive filter y
�
n � and the desired signal d

�
n � is

minimal[1]; minimizing ∑n e2 � n � .
In applications, the input signal of the adaptive filter x

�
n �

is contaminated with additive noise v
�
n � . By minimizing

∑n e2 � n � , we minimize the power of the noise; σ 2
v . No spe-

cial consideration is taken regarding the detail statistical be-
havior of the noise. All parts of input signal are given an
equal weighting. The obtained solution is more determined
by large amplitude noise portion than that by small ampli-
tude noise portion. The obtained solution is very much af-
fected by large amplitude noise portion. Further improve-
ments is hoped to be obtained when the statistical behavior
of the noise is considered.

The above mentioned problems are encountered by as-
suming that remaining error e

�
n � is Gaussian. Remembering

the fact that the signal e
�
n � is a summation of many stochas-

tic processes and the central limit theory [2], assuming that
e
�
n � is Gaussian is reasonable. Since many stochastic pro-

cesses with different probability density function (PDF) can
have equal mean or variance and no stochastic processes can
have normalized kurtosis

γ4
e � E � e4 � n ���

E2 � e2
�
n ��� � 3 	 (1)

except Gaussian process [3], in this paper we evaluate γ 4
e
�
n �

to test the Gaussianity of e
�
n � . We define the fourth-order

cumulants of the error as E � e4 � n ��� and its variance as σ 2
e .

In this paper we study an adaptive algorithm where � is ad-
justed by forcing γ4

e � 3; which is named least mean kurto-
sis (LMK) [8]. Thus, in LMK algorithm, the coefficient of
the adaptive filter is solved by forcing the error signal to be
Gaussian.

Many adaptive algorithms that are based on higher or-
der moments of the error signal due exist [4] � [8] and LMK
is one of such algorithm [8]. Those algorithms have been
shown to outperform LMS in some important applications.
The practical use of such algorithms, however, has been
largely restricted due to lack of accurate analytical models
to predict their behavior. Since some approximations have
also been introduced to reduce the calculation complexity of
the LMK, it is interesting to study its analytic behavior to
further open the possible applications of the algorithm.

The model of the behavior of the LMK adaptive algo-
rithm with Gaussian input has been studied [9]. The behavior
is studied for zero-mean contaminated input signals. Since
the probability density function (PDF) of the noise is un-
known, in this paper the average of the steady-state excess
mean square error (ASEMSE) of LMK algorithm is stud-
ied for both the symmetrical and the non-symmetrical PDF
noises.

2. THE BASIC ADAPTIVE SYSTEM

Consider a noisy measurements d
�
n � that arise from the lin-

ear model
d
�
n � ��
 T � n � � 0 � v

�
n � (2)

where the input data vector 
 � n � and desired unknown pa-
rameter vector � 0 are
 � n � ��
 x

�
n � x

�
n � 1 ������� x

�
n � M ��� T (3)

and � 0 ��� w0
1
�
n � w0

2
�
n ������� w0

M
�
n ��� T 	 (4)

respectively. The superscript T denotes the vector or matrix
transpose. v

�
n � accounts for the noise signal and the order of

the system is M. Both v
�
n � and x

�
n � are stochastic in nature.

The so-called estimation error is defined as

e
�
n � � d

�
n � � 
 T � n � � � n ��	 (5)

where � � n � is the estimate of � 0 at iteration n. Since (5)
shows that indeed the error signal e

�
n � is resulted from sum-

ming many stochastic process; d
�
n � andx

�
n � l � ; for 0 � l �

M, it is reasonable to assume that e
�
n � is Gaussian. There-

fore, it is expected to gain improvements when the optimal
solution is calculated by forcing γ4

e � 3.
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By defining � � n � � � 0 � � � n ��	 (6)

we can obtain

e
�
n � � ea

�
n � � v

�
n ��	 ea

�
n � ��
 T � n � � � n � (7)

The estimation of � 0 at time index
�
n � 1 � is recursively de-

termined using the gradient method [1]� � n � 1 � � � � n � � µaJ �LMK
�
en � 
 � n ��� (8)

The symbol � indicates the first derivatives; i.e. f � � x � �
∂ f
�
x �

∂x
. From the definition of q

�
n � , ea

�
n � is also called the

error signal due to parameter mismatch and the convergence
constant is denoted as µa.

3. THE LEAST MEAN KURTOSIS CRITERION

Instead of using the definition of the normalized kurtosis of
a stochastic in (1), this paper uses

JLMK
�
e
�
n ��� � 3E2 � e2 � n ��� � E � e4 � n ����� (9)

as the objective function to be minimized to obtain the opti-
mal solution. It is selected, so that no unknown parameters
are in the denominator.

Since all e
�
n � has to be available to evaluate E � e2 � n ���

and E � e4 � n ��� and it is impossible in adaptive algorithm, in
this paper the short average is used as an approximation

E � e3 � n ���! e3 � n ��	 (10)
and

E � e2 � n ���! e2 � n � � βe2 � n � 1 � � β 2e2 � n � 2 ��� (11)

Substituting the approximation in (10) into (8), the updating
is done using� � n � 1 � � � � n � � µLMKκ

�
e
�
n ��� 
 � n ��� (12)

where µLMK � 4µa and

κ
�
e
�
n ��� � 2e2 � n � � 3βe2 � n � 1 � � 3β 2e2 � n � 2 ��	 (13)

or by using (7), we get

κ
�
e
�
n ��� � �

ea
�
n � � v

�
n ��� � α1

� α2
� α3 �"	 (14)

where

α1 � 2e2
a
�
n � � 3βe2

a
�
n � 1 � � 3β 2e2

a
�
n � 2 �

α2 � 2v2 � n � � 3βv2 � n � 1 � � 3β 2v2 � n � 2 �
α3 � 4ea

�
n � v � n � � 6βv

�
n � 1 � ea

�
n � 1 � �

6β 2ea
�
n � 2 � v � n � 2 ��� (15)

The selection of the positive constant β is not critical and
will be discussed later. The theoretical performance of the
LMK is evaluated in the following section.

4. THE STEADY STATE PERFORMANCE OF THE
LEAST MEAN KURTOSIS ALGORITHM

One of the important performance of the adaptive algo-
rithm is the steady-state of the remaining error; limn # ∞q

�
n � .

Since the input is stochastic processes, we evaluate
limn # ∞E � q � n ��� for all possible inputs. The evaluation is
easily done by evaluating the average of the steady-state ex-
cess mean-square-error (ASEMSE) which is defined as

ASEMSELMK � lim
n # ∞

E $&% e � n �'% 2 ( � (16)

Under the often realistic assumption that [1]:
1. The noise sequence � v � n ��� is identical and independent

distributed (IID).
2. The noise � v � n ��� and the input sequences � x � n ��� are in-

dependent each other. Utilizing those two assumptions
and (7) and assuming that the noise is stationary the
ASEMSE is given by:

ASEMSELMK � σ2
v
� lim

n # ∞
E
�
ea
�
n ��� (17)

where σ 2
v is the variance of the noise sequence and ea

�
n �

is defined in (7).
3. Generally, the PDF of the noise is unknown. In this pa-

per, we assumed that the PDF of the noise v
�
n � can be

non-symmetrical; f
� � v

�
n ���*)� f

�
v
�
n ��� ; or symmetrical

distributed; f
� � v

�
n ��� � f

�
v
�
n ��� .

4. The PDF of the input signals x
�
n � is IID.

Utilizing the definition of � � n � in (6), (12) can be rewritten
to be � � n � 1 � � � � n � � µLMKκ

�
e
�
n ��� 
 � n � (18)

that can be taken its L2 norm. After some algebraic manipu-
lations, the relation in (19) can be obtained.%+% � � n � 1 �'%,% 2 � %,% � � n �-%+% 2 � 2µLMKκ

�
e
�
n ��� ea

�
n �� µ2

LMKκ2 � e � n ��� 
 T � n � 
 � n � (19)

The second term of (17) is solved by calculating

E ./%,% � � n � 1 �-%+% 2 0 � E .1%+% � � n �'%,% 2 0� 2µLMKE � κ � e � n ��� ea
�
n ���� µ2

LMKE . κ2 � e � n ��� 
 T � n � 
 � n � 0
(20)

When n 2 ∞, a steady state has been reached, so that

E �3%+% � � n � 1 �'%,% 2 � � E �3%+% � � n �-%+% 2 � ; (21)

showing that no further improvement can be gained. There-
fore, from (20) we get

E 4 % ea
�
n �'% 2

Xn 5 � E 6 % ea
�
n � � µLMKκ

�
e
�
n ��� Xn % 2

Xn 7 	 (22)

where Xn �8
 T � n � 
 � n � � tr � Rxx � . The symbol tr indicates
the trace of the autocorrelation matrix of the input signal
x
�
n � . Expanding the right hand side of (22), we obtain

2µLMKE
�
ea
�
n � κ � e � n ����� � µ2

LMKE $ κ2 � e � n ��� Xn
( (23)
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Using (7), (14) and the definition of α1, α2 and α3 in (15),
we can obtain

ea
�
n � κ � e � n ��� � ea

�
n �"� � ea

�
n � � v

�
n ��� � α1

� α2
� α3 ���9�

(24)
On the other hand from the definition of κ

�
e
�
n ��� in (14) we

can obtain

κ2 � e � n ��� � � � ea
�
n � � v

�
n ��� � α1

�:� α2
� α3 ��� 2 	 (25)

Using the facts that:
1. M is large. Thus, based on the central limit theory [2]

and (7), ea
�
n � can be safely assumed to be zero mean

Gaussian and unity standard deviation (SD). Thus all its
odd moment and its cumulant higher than two vanish.

2. v
�
n � and ea

�
n � are independent

3. The number of samples is large; so that we can
have E . v2 � n � 0  E . v2 � n � 1 � 0  E . v2 � n � 2 � 0 �
σ2

v and E . e2
a
�
n � 0  E . e2

a
�
n � 1 � 0  E . e2

a
�
n � 2 � 0 �

E . e2
a
�
n � 0

we will obtain

E � ea
�
n � κ � e � n ����� � 2E . e4

a
�
n � 0� 12E . v2 � n � 0 E . e2

a
�
n � 0 (26)

and

E $ κ2 � e � n ��� ( � 4E . e6
a
�
n � 0 �

γ1E . v4 � n � 0 E . e2
a
�
n � 0;�

γ1E . e4
a
�
n � 0 E . v2 � n � 0 � 4E . v6 � n � 0� γ2E . v2 � n � v2 � n � 1 � 0 E . e2

a
�
n � 1 � 0 �

γ3E . e2
a
�
n � 2 � 0 E . v2 � n � v2 � n � 2 � 09�

9β 2E . v2 � n � v4 � n � 1 � 0;�
9β 4E . v2 � n � v4 � n � 2 � 0 	 (27)

where

γ1 � 60 � 21β 2 � 21β 4 	
γ2 � 60β � 54β 2 � 18β 3

γ3 � 60β 2 � 18β 3 � 54β 4 (28)

Using the moment theorem [2] that stated E
�
x4 � � 3E

�
x2 �

and E
�
x6 � � 15E

�
x2 � and the cumulants theory [3], we get

E � ea
�
n � κ � e � n ����� � 6E . e2

a
�
n � 0 � 12σ 2

v E . e2
a
�
n � 0 	 (29)

and

E $ κ2 � e � n ��� ( � 60E . e2
a
�
n � 0 � 6γ1σ2

v E . e2
a
�
n � 0 �

60σ 2
v
� γ2mv

4
�
0 	 1 	 1 � E . e2

a
�
n � 0 �

γ3E . e2
a
�
n � 0 mv

4
�
0 	 2 	 2 � � 9β 2mv

6
�
0 	 1 	 1 	 1 	 1 � �

9β 4mv
6
�
0 	 2 	 2 	 2 	 2 � (30)

where the N-th order moment of the noise signal v
�
n � is de-

fined as

mv
N <=?> N @ 1 A termsB C�D E

s 	 q 	�������FG � E HIJ IK > N @ 1 A termsB C�D E
v
�
n � v � n � s � v � n � q �"�����ML INIO � (31)

PRQ�SPUTVS
P�WXSPRS
SWXS

Y π
2

π

Z\[^],_ �
dB �

`ba�c�d [^e,],f'g-h�i c g-jlkmg'_/n�o �
rad �

Figure 1: The frequency response of the 20th order system
that was used in the simulation to obtain ASEMSE.

Substituting (29) and (30) into (17), we can obtaine
ASEMSE as given in (32). Since the numerator of (32) is
always positive, we have to limit µLMK as in (34) to be sure
that the denominator of (32) is positive. By doing so we can
be sure that ASEMSE in (32) is positive and valid. This is
consistent with the limitation of the step size µ that will be
explained in the next section.

Equation (32) shows that the selection of µLMK deter-
mine the resulted ASEMSE. ASEMSE was experimentally
solved from (17) by generating contaminated signals to be
applied as x

�
n � . Those contaminated signals were gener-

ated by adding two signals. The first signal was generated
by exciting an unknown model with a zero-mean stochastic
process g

�
n � and the second signal was the noise v

�
n � . The

power of g
�
n � was fixed to be 1.0 and the power of v

�
n � were

adjusted to obtain S p N � � 5 dB in all experiments. To get
unbiased modeling, the order of the unknown and the adap-
tive systems were set to be 20. The frequency response of
the 20th order system that was used in experiment is shown
in Fig. 1. We evaluated the figure of merit ρ using

ρ � ASEMSELMS

ASEMSELMK
(32)

The ASEMSELMS is the ensemble average of the steady state
excess mean square error of the standard LMS algorithm
[10] and ASEMSELMK is evaluated from (32). The value of
ASEMSELMS and ASEMSELMK were obtained from averag-
ing 200 times independent experiments. We set various

kµ � µLMS

µLMK
� (33)

ρ q 1 means that ASEMSELMK r ASEMSELMS. On
the other hand ρ r 1 means that ASEMSELMK q
ASEMSELMS. Table 1 indicates that when we hope to
achieve ASEMSELMK r ASEMSELMS, µLMK has to be se-
lected lower than that of LMS. Our experiments using var-
ious noises indicates that this is true for all kind of noises.
LMK has to utilize lower step size than that of LMS, but
since the time constant of LMK is smaller than that of LMS,
LMK can still be faster than LMS. Furthermore our experi-
ments show that the selection of β is not critical.
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ASEMSE � σ 2
v
� µLMK . β 2 $ 9mv

6
�
0 	 1 	 1 	 1 	 1 � � 9β 2mv

6
�
0 	 2 	 2 	 2 	 2 � ( � 60σ 2

v
0 tr �ts xx �

12 � 24σ 2
v
� µLMK $ 60 � 6γ1σ2

v
� γ2mv

4
�
0 	 1 	 1 � � γ3mv

4
�
0 	 2 	 2 � ( tr �Xs xx � 	 (32)

E �lu � � n � 1 �-ut� � µ2
LMKtr �Xs xx � $ 9β 2mv

6
�
0 	 0 	 1 	 1 	 1 	 1 � � 9β 4mv

6
�
0 	 0 	 2 	 2 	 2 	 2 � ( �

E �3u � � n �'ut� � µLMKE � e2
a
�
n ��� . 12 � 24σ 2

v
� µLMK $ 60 � 6σ 2

v λ1
� λ2mv

4
�
0 	 0 	 1 	 1 � � λ3m4

4
�
0 	 0 	 2 	 2 � ( tr �ts�v x � 0 (33)

µLMK � 12 � 24σ 2
v$ 60 � 6γ1σ2

v
� γ2mv

4
�
0 	 1 	 1 � � γ3mv

4
�
0 	 2 	 2 � ( tr �ts vwv � (34)

5. THE STEP SIZE LIMIT

By substituting (14) and (25) into (20), we will obtain equa-
tion (33). Based on (33), we have to limit µLMK as in (34).
This limit is consistent with the pretending (32) to be posi-
tive.

6. THE SPEED OF CONVERGENCE

Another important parameter to measure the performance of
the adaptive filter is the convergence speed; showing how
fast the algorithm adapts when disturbances occur. Assuming
that µLMK rxr 1 	 all terms of (33) containing µLMK can be
neglected. Thus from (20) we can write

E ./%,% � � n � 1 �-%+% 2 0 � E ./%,% � � n �-%+% 2 0 � E � 2µLMKκ
�
e
�
n ��� ea

�
n ��� (35)

Using (29) we can obtain

E .1%+% � � n � 1 �'%,% 2 0 � E .y%,% � � n �'%,% 2 0� 1 � 2µLMK . 6 � 12σ 2
v
0 s�vwv �

(36)

Using the method in [1], we can obtain

τLMK � 1
µLMK

�
12 � 24σ 2

v �ws vwv � (37)

The convergence speed figure of merit is evaluate using

kτ � τLMS

τLMK
� 12 � 24σ 2

v 	 (38)

where τLMS is the time constant of the LMS algorithm [1].
The resulted kτ for various conditions are also included in
tabel 1. kτ q 1 means that the time constant of LMK algo-
rithm τLMK r τLMS, meaning that LMK will converges faster
than that of LMS.

7. CALCULATION COMPLEXITY

Table 2 shows the required multiplications (mpx) and additions
(addt) to implement various adaptive algorithms. The table shows
that LMK has the heaviest burden among LMS, NLMS and LMK.
This fact indicates that more powerful processors have to be uti-
lized for implementing the proposed LMK algorithm than in case of
LMS, NLMS. This complexity is compensated by the fact that the
performance of the LMK is the best among those three algorithms.

Noise kµ ρµ kτ
Type

Gaussian 1 0.85 18
distributed 2 1.75 18

8 2.39 18
12 3.60 18
20 6.04 18

Flat 1 0.17 14
distributed 2 0.32 14

8 1.38 14
12 2.03 14
20 3.34 14

Non- 1 0.17 18
symmetrical 2 0.34 18
distributed 8 1.38 18

12 2.06 18
20 3.45 18

Table 1: The table of kµ , ρµ and kτ for various adaptive al-
gorithms and various noises. All S p N � � 5dB �

Method Formula Complexity
LMS z|{ n } 1 ~/��z|{ n ~t} µ ��{ n ~ e { n ~ 2M } 2 mpx

2M addt
NLMS z|{ n } 1 ~/��z|{ n ~t} µ v�� n � e � n �

Xn
3M } 2 mpx

3M addt
LMK z|{ n } 1 ~���z|{ n ~X} µ �;{ n ~ κ { e { n ~�~ 2M } 7 mpx

2M } 2 addt

Table 2: The total multiplications
�
mpx � and additions�

addt � for various adaptive algorithms.

8. THE SIMULATION RESULTS

In the following experiment, the unknown model is excited by a
zero-mean noise. The order of the unknown system was set to be
20, while the order of the adaptive system was also selected to be
20. We measured e2 { n ~ as a function of time index n. We com-
pare the result of the LMK and the conventional LMS algorithm [1]
methods. The level of the noise v { n ~ was adjusted so that S � N ��� 5
dB. In the first experiment, we used Gaussian noise. The average
progression of e2 { n ~ that was obtained from 200 independent runs
is plotted in Fig. 2. We used the LMK and the LMS algorithms to
adapt the coefficient of the filter. We select kµ � 10. The progres-
sion of e2 { n ~ for both algorithms are plotted in Fig. 2.

Those plots indicate that the LMK algorithm converges faster
than that of LMS and also to a lower error as it is expected in section
II.

In the second experiment, a non Gaussian noise was applied.
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Figure 2: The progression of e2 � n � when the noise is Gaus-
sian using LMS and LMK algorithms.
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Figure 3: The progression of e
�
n � for contaminated non-

Gaussian symmetrical PDF additive noise.

The non Gaussian noise was generated using the random noise gen-
erator with flat probability density function � 1 � f { x ~9� 1. In the
experiments we applied S � N ��� 5 dB.

The obtained e2 { n ~ as in Fig. 3 shows the same behavior as
before. We obtain smaller final error by using LMK than that when
LMS is used.
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Figure 4: The progression of e
�
n � for contaminated non-

Gaussian non-symmetrical PDF additive noise.

In the third experiment, a non Gaussian noise with non-

symmetrical PDF was applied. The non Gaussian noise was gener-
ated using the random noise generator with flat probability density
function � 1 � f { x ~3� 1. To get non-symmetrical PDF will only take
signal that are positive and use them as noise. In the experiments
the power of the noise was adjusted to get S � N ��� 5 dB.

The obtained e2 { n ~ as in Fig. 4 shows the same behavior as
before. We obtain smaller final error by using LMK than that when
LMS is used.

All our other simulation results show the same behavior for
both Gaussian and impulsive additive noise cases. We can always
achieve smaller error by using LMK. The LMK algorithm conver-
gences is faster than that when LMS is used. Because of space
limitation, those results are not presented here.

In many applications, the statistical behavior of noise is un-
known and it could be impulsive. Thus, finally we recommend that
LMK is widely used as an alternative adaptive algorithm than the
conventional LMS.

9. CONCLUSIONS

A theoretical analysis of the LMK algorithm performance has been
presented in this paper. The theoretical and experimental study
results indicate that LMK can outperforms the conventional LMS
method; i.e for Gaussian and non-Gaussian noises by adjusting
µLMK. Selected the appropriate µLMK is still studied and will be
reported later. Since calculation burden of the LMK and LMS are
not much different, LMK can be considered as an alternative algo-
rithm to LMS.

Real applications and also efficient hardware implementation of
LMK are still studied and will be reported somewhere else.
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