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ABSTRACT
This paper presents a new method for the blind separation of
sparse sources whose number N can exceed the number of
sensors M . Recently, sparseness based blind separation has
been actively studied. However, most methods utilize a lin-
ear sensor array (or only two sensors), and therefore have cer-
tain limitations; e.g., they cannot be applied to symmetrically
positioned sources. To allow the use of more than two sen-
sors that can be arranged in a non-linear/non-uniform way,
we propose a new method that includes the normalization
and clustering of the observation vectors. We report promis-
ing results for the speech separation of 3-dimensionally dis-
tributed five sources with a non-linear/non-uniform array of
four sensors in a room (RT60= 120 ms).

1. INTRODUCTION

Blind source separation (BSS) is an approach for estimat-
ing source signals that uses only the mixed signal informa-
tion observed at each sensor. The BSS technique of speech
focused on in this paper, has many applications including
hands-free teleconference systems and automatic conference
minute generators. Such applications usually have to deal
with underdetermined situations where the N sources out-
number the M sensors (N > M ).

In this paper, we propose a novel BSS method that can
handle the underdetermined convolutive BSS problem. Two
approaches have been widely studied and employed to solve
such a BSS problem; one is based on independent component
analysis (ICA) (e.g.,[1]) and the other relies on the sparseness
of source signals (e.g., [2]). Recently, many ICA methods
have been proposed for the convolutive BSS problem (e.g.,
[1, 3–5]), however, ICA cannot be applied when N > M .
Some [6, 7] handle cases where N > M with ICA, however,
they only separate a few dominant sources and still cannot
separate all of the sources.

On the other hand, a sparseness based method can sep-
arate all N sources even when N > M . There are several
approaches [2, 8–13] that rely on the sparseness of the source
signals. If the signals are sufficiently sparse, we can assume
that the sources rarely exist simultaneously. Therefore, we
can estimate each source by collecting observation samples
that appear to belong to one of the sources. Previously, such
observation samples were evaluated by using geometric in-
formation, which is estimated from only two sensor obser-
vations. Some authors used the level difference [8–10] or
phase difference [11] between two observations, and some
employed both the level difference and phase difference be-
tween two sensor observations [2, 12].

However, it is difficult to extend these methods to M ≥ 3,
especially for a non-linearly arranged sensor array. A two
sensor system (or a linear sensor array) limits the separa-
tion ability on a 2-dimensional half-plane, e.g., the previous
methods cannot separate sources placed at a mirror image
point. To allow the free location of sources, we need more
than two 2- or 3-dimensionally arranged sensors.

Although the method in [13] is generalized for more than
two sensors case, they work in each frequency bin to han-
dle convolutive mixtures. Therefore, they have to solve so
called the permutation problem after separating the signals
at each frequency. This can cause errors and degrade the
separation performance. Furthermore, when the observation
data length is short (e.g., with an on-line implementation and
moving source tracking), working at each frequency is inef-
ficient because fewer sample data are available at each fre-
quency. To avoid such problems, a frequency normalization
should be employed to make it possible to handle all the fre-
quency components together.

In this paper, we propose a new source separation method
that can be applied to multiple sensors arranged non-linearly.
First, we normalize all the observations with regard to one of
the observations. Our normalization also includes frequency
normalization. The normalized observation vectors maintain
the level and phase difference information of all the sensor
pairs. Then, we cluster the normalized observation vectors.
This clustering is executed for whole frequency components.
Finally, we design binary masks using the clustering result
and estimate the separated signals with the masks.

With our proposed separation method, we do not need the
exact sensor locations, but simply the maximum distance be-
tween a given sensor and any other sensor. This allows us to
use a non-linear/non-uniform arrangement of multiple sen-
sors. Therefore, we can separate signals that are distributed
2- or 3-dimensionally. In addition, by employing frequency
normalization, we can handle all the frequency components
together, and therefore obtain a promising result even when
only short observations are available. We show experimental
results obtained in a real room (reverberation time of 120 ms)
with non-linear sensor arrays in underdetermined scenarios
(#sources × #sensors = 3×4 or 4×5).

2. PROPOSED APPROACH

2.1 Problem description

Suppose that sources s1, . . . ,sN are convolutively mixed and
observed at M sensors
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xj(t) =
∑N

i=1

∑

l hji(l)si(t− l), j =1, . . . ,M, (1)

where hji(l) represents the impulse response from source i
to sensor j. In this paper, we focus particularly on a situation
where the number of sources N can exceed the number of
sensors M (N > M ). We assume that N and M are known.
The goal is to obtain separated signals yk(t) that are estima-
tions of si solely from M observations.

2.2 Frequency domain operation

Figure 1 shows the flow of our method. First, time-domain
signals xj(t) sampled at frequency fs are converted into
frequency-domain time-series signals xj(f,τ) with an L-
point short-time Fourier transform (STFT):

xj(f,τ) ←
∑L/2−1

r=−L/2
xj(τ + r)win(r)e−2πfr, (2)

where f ∈ {0, 1

Lfs, . . . ,
L−1

L fs} is a frequency, win(r) is a
window that tapers smoothly to zero at each end, such as a
Hanning window 1

2
(1+cos 2πr

L ), and τ is a time index.
The remaining operations are performed in the frequency

domain. There are two advantages to this. First, convolutive
mixtures (1) can be approximated as instantaneous mixtures
at each frequency:

xj(f,τ) ≈
∑N

i=1
hji(f)si(f,τ), (3)

or in vector notation,

x(f,τ) ≈
∑N

i=1
hi(f)si(f,τ), (4)

where hji(f) is the frequency response from source i
to sensor j, and si(f,τ) is a frequency-domain time-
series signal of si(t) obtained by the same operation as
(2), x = [x1, . . . ,xM ]T is an observation vector and hi =
[h1i, . . . ,hMi]

T is a mixing vector that consists of the fre-
quency responses from source si to all sensors.

The second advantage is that the sparseness of a source
signal becomes prominent in the time-frequency domain [2,
8, 10, 12], if the source is colored and non-stationary such
as speech. The possibility of si(f,τ) being close to zero is
much higher than that of si(t). When the signals are suffi-
ciently sparse in the time-frequency domain, we can assume
that the sources rarely overlap, and (3) and (4) can be approx-
imated respectively as

xj(f,τ) ≈ hjk(f)sk(f,τ), k ∈ {1, · · · ,N}, (5)
x(f,τ) ≈ hk(f)sk(f,τ), k ∈ {1, · · · ,N}, (6)

where sk(f,τ) is a dominant source at the time-frequency
point (f,τ).

2.3 Proposed separation procedures

2.3.1 Normalization

The new method involves normalizing all observation vector
components xj(f,τ) (j = 1, . . . ,M ) for all frequency bins
(f = 0, 1

Lfs, . . . ,
L−1

L fs) such that they form clusters, each
of which corresponds to an individual source. Our normal-
ization procedure includes phase-normalization, frequency-
normalization and unit-norm normalization.

First, with phase-normalization, we eliminate the phase
inconstancy due to the scalar sk(f,τ) in the observation
samples (5). This can be normalized by taking the ratio of
two observation components xj and one arbitrarily selected

x(f,τ)
STFT

Normalization 

Clustering
Mask
design 

ISTFT
yk(f,τ)

yk(t)
x1(t)

xM(t)

... ]]

Ck

Mk(f,τ)

x(f,τ)

Figure 1: Flow of proposed method.

observation xJ : xj(f,τ)/xJ (f,τ) ≈ hjk(f,τ)/hJk(f,τ).
Then, we perform frequency-normalization because the
phase of hjk(f,τ)/hJk(f,τ) is proportional to the frequency
if we can assume that hjk(f,τ) has linear phase characteris-
tics. This normalization allows us to handle all the frequency
components together. The frequency is normalized by divid-
ing the phase of xj(f,τ)/xJ (f,τ) by f .

Our normalization, which includes the above normaliza-
tions, is performed for the all components of x(f,τ) by se-
lecting one of the sensors J :

x̄j(f,τ) ← |xj(f,τ)|exp

[

−
arg[xj(f,τ)/xJ (f,τ)]

4fc−1dmax

]

(7)

where c is the propagation velocity and dmax is the maxi-
mum distance between sensor J and sensor ∀j ∈ {1, . . . ,M}.
This normalization makes the phase zero at sensor J . The
rationale for the frequency normalization 4fc−1dmax can be
found in Section 2.4. Here, we maintain the amplitudes at all
sensors to utilize the level difference information.

We also apply unit-norm normalization to facilitate clus-
tering,

x̄(f,τ) ← x̄(f,τ)/ ||x̄(f,τ)|| (8)

for x̄(f,τ) = [x̄1(f,τ), . . . , x̄M (f,τ)]T .
We describe the properties of the normalized observation

vector in Section 2.4.

2.3.2 Clustering

The next step is to find clusters C1, . . . ,CN formed by all
normalized vectors x̄(f,τ). Note that the normalized vectors
x̄(f,τ) are complex M -dimensional vectors, and therefore
the clustering is carried out in an M -dimensional space.

After setting appropriate initial centroids ck (k =
1, · · · ,N ), clustering is realized by the following iterative up-
dates:

Ck = {x̄(f,τ) | k= argmini||x̄(f,τ)−ci||
2} (9)

ck ← E[x̄(f,τ)]x̄∈Ck
, ck ← ck/||ck||, (10)

where E[·]x̄∈Ck
is a mean operator for the members of a clus-

ter Ck. That is the cluster members are determined by (9) and
their centroid is calculated by (10). This minimization can be
performed efficiently with the k-means clustering algorithm
[14] with a given source number N .

2.3.3 Mask design and separated signal reconstruction

Finally, we design a time-frequency binary mask that extracts
the time-frequency points in one of the clusters

Mk(f,τ) =

{

1 x̄(f,τ) ∈ Ck

0 otherwise (11)
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and obtain the separated signals yk(f,τ) by

yk(f,τ) = Mk(f,τ)xJ ′(f,τ)

where J ′ ∈ {1, · · · ,M} is a selected sensor index.
At the end of the flow, we obtain outputs yk(t) by an

inverse STFT (ISTFT):

yk(τ + r) ←
1

L·win(r)

∑

f∈{0, 1

L
fs, ..., L−1

L
fs}

yk(f,τ)e2πfr.

(12)

2.4 Properties of normalized observation vector

We explain why normalized observation vectors x̄(f,τ) form
a cluster that corresponds to an individual source.

Let us approximate the frequency response hji(f) by us-
ing a direct-path (near-field) model

hjk(f) ≈
q(f)

djk
exp

[

−2πfc−1(djk −dJk)
]

, (13)

where djk > 0 is the distance between source k and sensor
j. We assume that the phase 2πfc−1(djk −dJk) depends on
the distance difference to the reference sensor J . We also
assume that the attenuation q(f)/djk depends on both the
distance and a frequency-dependent constant q(f) > 0.

Substituting (13) and (5) into (7) and (8) yields

x̄j(f,τ) ≈
1

djkD
exp

[

−
π

2

(djk −dJk)

dmax

]

, D =

√

∑M
j=1

1

djk
2

We can see that the normalized observation vector x̄(f,τ) is
independent of frequency, and dependent only on the posi-
tions of the sources and sensors due to the term 4fc−1dmax

in (7). Therefore the observation vectors are clustered based
on the source geometry. We can also see that the observation
level information 1

djk
remains, because our normalization (7

maintains the amplitude of each observation.
We also show the rationale behind the frequency nor-

malization 4fc−1dmax in (7). The frequency normalization
4fc−1dmax provides us with an optimal argument property
for the clustering. From the fact that maxj,k |djk − dJk| ≤
dmax, an inequality

−π/2 ≤ arg[x̄j(f,τ)] ≤ π/2 (14)

holds. This property is important for two reasons. The first
is that |x̄− x̄′| increases monotonically as |arg(x̄)−arg(x̄′)|
increases. This is important for the distance measure in (9).
The second reason is that the arguments of normalized ob-
servation vectors are the most scattered. This is a preferable
property for small sensor array systems (e.g., see Section 3).
If we use such systems, phase differences between sensors
are more reliable than level differences for clustering. The
frequency normalization with 4fc−1dmax allows us to make
full use of the phase (argument) information.

3. EXPERIMENTS

3.1 Experimental conditions

We performed experiments to verify that our method can
separate signals mixed in a reverberant condition. We mea-
sured impulse responses hjk(l) under the conditions shown
in Figs. 2 and 4. Mixtures were made by convolving the im-
pulse responses and 5-second English speeches. The rever-
beration time of the room was RT60 =120 ms. The sampling
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Figure 2: Experimental setup with a non-linear array
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Figure 3: Example clustering result (N = 4,M = 3). o, x, +,
* show the cluster members C1, C2, C3 and C4, respectively.

rate was 8 kHz. The frame size L for STFT was 512, and we
changed the frame shift from 256(= L/2) to 64(= L/8).

3.2 Performance measures

The separation performance was evaluated in terms of
the improvement in the signal-to-interference ratio (SIR)
for each output i. This improvement was calculated by
OutputSIRi − InputSIRi, where

InputSIRi = 10log10

〈|xJ ′i(t)|
2〉t

〈|
∑

k 6=i xJ ′k(t)|2〉t
(dB), (15)

OutputSIRi = 10log10

〈|yii(t)|
2〉t

〈|
∑

k 6=i yik(t)|2〉t
(dB), (16)

where xJ ′k(t) =
∑

l hJ ′k(l)sk(t − l) and yik(t) is the
component of sk that appears at output yi(t): yi(t) =
∑N

k=1
yik(t). Moreover, we used the signal to distortion ra-

tio (SDR) as a measure of sound quality:

SDRi = 10log10

〈|xJ ′i(t)|
2〉t

〈|xJ ′i(t)−αyii(t−D)|2〉t
(dB), (17)

where α and D are parameters used to compensate for the
amplitude and phase difference between xJ ′i and yii. We
investigated four combinations of speakers and averaged the
results.
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Table 1: Experimental results for N = 4,M = 3,

y1 y2 y3 y4

InputSIRi −6.3 −6.4 −4.8 −2.3
Shift L/2 SIRi 15.5 10.8 14.0 13.8

SDRi 5.0 4.7 6.1 7.3
Shift L/4 SIRi 16.5 12.1 15.2 14.5

SDRi 5.6 5.5 6.9 8.0
Shift L/8 SIRi 17.0 12.2 15.8 14.8

SDRi 5.8 5.6 7.1 8.3

3.3 Results

First, we show the result we obtained for four sources with
three sensors that were arranged non-linearly (Fig. 2). Fig-
ure 3 shows an example clustering result for normalized ob-
servation vectors at two frequencies. Each point shows the
squared distance ||x̄− c1||

2 between normalized vectors x̄

and one of the centroids c1. We can see that the clustering
was accomplished successfully using our clustering method.
Moreover, it can be seen that the clustering is independent of
frequency. Therefore, we can cluster all the frequency com-
ponents together.

Table 1 shows the separation result. From Table 1, we
can see that our proposed method achieved good separation
even if we utilized a non-linear sensor arrangement. Table
1 also shows the SIR and SDR values when we changed the
frame shift from 256(= L/2) to 64(= L/8). By using a fine-
shift (L/4 and L/8), the SDR values increase without any
reduction in the SIR values. This is because the fine-shift and
the overlap-add realize a gradual change in the spectrogram
of the separated signal [15].

We also applied our method to a non-uniform 3-
dimensional sensor arrangement for a five sources and four
sensors case (Fig. 4). Here, the system knew just the maxi-
mum distance (dmax =5.5 cm) between the reference micro-
phone (Mic. 1) and the others. Table 2 shows the separation
results. We can see from Table 2 that our proposed method
can be applied to such a non-uniform 3-dimensional micro-
phone array system.

We have also considered the musical noise problem,
which usually occurs when we use a time-frequency binary
mask like (11). The results of subjective tests can be found
in [16]. Some sound examples can be found at [17].

4. DISCUSSIONS

In this section, we discuss the advantages of our method
compared with some previous methods [2, 8, 11, 13].

4.1 Arbitrary source and sensor arrangements

The first advantage of the proposed method is that we do
not need the exact sensor locations, but simply the maximum
distance dmax between a given sensor and any other sensor.
Even when we do not have the maximum distance, we can
still use an arbitrary (slightly large) figure as dmax, and em-
ploy our proposed normalization method. Therefore, we can
utilize 2- or 3-dimensionally arranged sensors, that can be
arranged in a non-linear/non-uniform way.

A previously adopted linear sensor array [2, 8, 11] lim-
its the separation ability on a 2-dimensional half-plane: the
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Figure 4: Experimental setup with a 3-D array

previous methods cannot separate sources placed at symmet-
rical positions with respect to the sensor axis. On the other
hand, because our proposed method makes it easy to employ
a 2 or 3-dimensional non-linear sensor arrangement, we can
cope with arbitrary source arrangements such as those shown
in Figs. 2 and 4.

4.2 Avoidance of (inner-)permutation problem

The second advantage is that the proposed normalization
of the observation vector allows us to cluster all the fre-
quency components together. Previously, [13] has shown a
separation result for more than two sensors case, however,
they still worked in individual frequency bins. Therefore the
(inner-)permutation problem remains and permutation error
degrades the separation performance. By contrast, our fre-
quency normalized observation vector clustering inherently
avoids this problem.

4.3 Applicability to short observations

Moreover, frequency normalization allows us to utilize
enough data samples and obtain good performance even if
we use short observations. This applicability to short data
is important e.g., for on-line implementations and moving
source separation. On the other hand, if we do not apply fre-
quency normalization, the clustering should be performed at
each frequency, and therefore, fewer sample data are avail-
able for clustering than with frequency normalization. This
can degrade the separation performance.

To confirm the effectiveness of frequency normalization
to short observations, we separated some short speech sig-
nals with and without frequency normalization. The setup
was the same as that shown in Fig. 2 and the frame size and
frame shift were L = 512 and 256(= L/2), respectively. We
utilized the same 5-second data as Section 3, however, we
divided these data into some short (1 second or 0.5 seconds)
blocks and separated them block by block. We evaluated the
SIR improvements and SDR for whole 5-second outputs for
four outputs y1, · · · ,y4 and averaged the results (Table 3).

With our proposed frequency normalization technique
(labeled with “yes (Eq. 7)” on Table 3), we performed clus-
tering by using all the frequency data samples. By contrast,
for conditions without frequency normalization (labeled with
“no (Eq. 18)” on Table 3), the observation vector was only
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Table 2: Experimental results for N = 5,M = 4,
y1 y2 y3 y4 y5

InputSIRi −11.1 −3.0 −4.5 −10.6 −4.7
Shift L/2 SIRi 18.4 13.7 6.5 15.5 16.0

SDRi 2.8 4.6 3.5 3.3 6.3
Shift L/4 SIRi 20.1 15.0 6.9 16.6 17.7

SDRi 3.1 5.1 3.8 3.9 7.0
Shift L/8 SIRi 20.7 15.5 6.9 17.2 18.2

SDRi 3.3 5.2 3.9 4.1 7.2

phase normalized as in [13]

x̄j(f,τ) ← arg[xj(f,τ)/xJ (f,τ)], (18)

and clustering was executed frequency by frequency. We uti-
lized the k-means algorithm for the clustering. If the clus-
tering did not converge for a frequency, we set the binary
mask (11) 0 for all k at that frequency. The average num-
ber of failed frequency bins per block is also shown in Table
3 (see rows labeled with “NG”). The permutation problem
in the condition “no (Eq. 18)” was solved by clustering the
(frequency normalized) centroids of each frequency and each
block.

Table 3 summarizes the results. With frequency normal-
ization (“yes (Eq. 7)”), even when we partitioned the obser-
vations into blocks of 0.5 seconds, we observed no degra-
dation. On the other hand, without frequency normaliza-
tion (“no (Eq. 18)”), the performance worsened as the block
length decreased. The large degradation in SDR for the short
block length reveals that clustering failed in many frequency
bins in each block (see “NG” figures in the Table 3). The
failure means that the k-means algorithm could not make N
clusters. This is because there were fewer than N sources
in each frequency due to source sparseness. The SIR degra-
dation shows that the reliability of the clustering decreased
because of the inadequate sample data.

From these results, we can say that our proposed method
with frequency normalization is promising as regards the on-
line implementation of underdetermined BSS.

5. CONCLUSION

We proposed a novel source separation method for cases
where N > M that assumes source sparseness. The method
is based on the normalization and clustering of the ob-
servation vectors. Our proposed normalization technique
makes it easy to employ multiple sensors arranged in a
non-linear/non-uniform way. We obtained promising experi-
mental results under reverberant underdetermined conditions
even when we utilized observations of less than one second.

If we know the sensor locations, we can also estimate the
directions of arrival of sources by using the cluster centroids
obtained with our proposed method. The method and results
can be found in [18].
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