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ABSTRACT smoother via an imbedding method, where the initial con-

The linear least mean-square fixed-point smoothing problerﬂ't'.On Is the filter of the signal. The proposed LLMSE fixed-
in discrete-time systems is formulated in the general cas O'Pt srfnoothng algorithm, W?'Chh |r]lc|:Iuc.ies the recursive for-
where the signal is any nonstationary stochastic process gy asd _or_IEhe complutat|on of the filtering estimate, is pre-
second order which is observed in the presence of an ad(ﬁ—ente in theorem L.

tive white noise correlated with the signal. Under the only
assumption that the correlation functions involved are factor- 2. PROBLEM FORMULATION

izable kernels, an efficient recursive computational algorithmn this section we formulate the discrete LLMSE fixed-point
for the fixed-point smoother is designed. Also, a filtering al-smoothing problem involving correlated signal and observa-

gorithm is devised. tion noise.
Specifically, let{x(t;),ti > to} be a signal process which
1. INTRODUCTION is any real second-order nonstationary stochastic process,

o _with zero-mean and autocorrelation functi(ti,t;) =

In the last decades, the problem of estimating a random sige x(t;)x(t; )], for tj, tj > to.
nal observed through a linear mechanism has been a topic \We consider that the signal is observed in the presence
widely studied. Specifically, we can find an extensive litera-of an additive white noise and the available observations are
ture concerning the design of recursive formulas for updatingjiven by a stochastic proceSg(ti ), ti > to} through the equa-
and optimum estimate for some criterion of optimality suchtion
as the minimization of the error variance.

In this framework, the (LLMSE) linear least mean-square y(ti) = x(ti) +v(ti) 1)

error estimation problem is reduced to the problem of SOIVWherev(ti) is a zero-mean white noise process with autocor-

ing a linear equation, called the Wiener-Hopf equation. The?elation finctionEv(t v(t;)] = ri&;, r; > 0, and correlated

solution to the Wiener-hopf equation, the impulse responsgy, e signal. LeRyy, (fi1;) denote the cross-correlation
function of the optimal estimate, can be determined from th?unction between any two processes;) andxa(t;)
1 ]/

knowledge of the correlation fu_nctions of the processes in- We assume that the autocorrelation function of the signal
volved. Thus, a method of solution to the LLMSE estimation,, 4 e cross-correlation function between the signal ang the
problems consists in imposing structural assumptions on thg,so ation noise are factorizable kernels of the form
properties of the correlation functions involved.

In this line, and under the assumption that the signal is Ru(ti,ti) = a'(t)b(tj), to<t; <t
modelled by state-space system, the most known and used ADHTT B (t)a(ty), to <t <t
LLMSE estimation algorithm is the Kalman filter [1]. Un- aH)BE), to<t <t
fortunately, for some applications in many communication Ra(ti, t) _{ .I/\ 00 > -JE i
problems, it is impossible to specify such state-space mod- VU)A(L), tosti<t;

with a(tj) andb(t;) bounded vectors of dimensian a(t;)

eI; for the signal and then the Kalma_m filter cannot be ap
plied. Alternatively, a LLMSE estimation algorithm is pos- andf(t) arem-dimensional bounded vectors, ap) and
A (t;) arel-dimensional bounded vectors.

_sible under the only hypothesis that the correlation function
involved are factorizable kernels [see, e.g., [2], [3], [4]]. In Then, using the available information from the set of ob-
vations{y(t1),...,y(tn)}, we are interested in obtaining

fact, since factorizable kernels are suitable for expressinger
correlation functions of general stationary or nonstationanfhe LLMSE estimator of the signaity) for a fixed instant
signal processes, these estimation algorithms will be mdelgf timety < ty. It is well known that this estimatog(ty /t ),

applied. is the ortho jecti [
. . . ) gonal projection of(tx) onto the space of linear
_This paper is concemed with the LLMSE fixed- yansformations of the observations §gfts), ... ,y(t)}.

point smoothing problem using covariance specifications in According to the projection theorem, this element

discrete-time system involving correlated signal and noisegy, /1, ) exists, is unique and can be expressed as a linear
This general estimation problem which includes correlation. nination of the observationygt;) y(ty) of the form
between the signal and the observation noise is usefulniPS] B

many engineering applications in stochastic control and co

)

munications [5]. Then, by assuming that the covariance R N
functions of the signal and noise are factorizable kernels, X(te/tn) = hitit, tn)y(t)) 3)
we get a recursive expression for the LLMSE fixed-point =1
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whereh(ty,t;,tn) is an impulse-response function which canwith the initializatione(tg) = 0, and where
be determined from the Wiener-Hopf equation

g(tn,tn) = [N(tn) — Q(tn-1) K (tn)]

Ex(t)y(t)] = Y hitet,thEY()YE)], to <t <tn (4) x v+ [0 (tn) = 1 () QUtn—1)] 1 (tn) }
=1

z

L)

_ . . with the p x p-dimensional matricial functiorQ(ty) given
From the observation equation (1) and using the hypothpy

esis that the autocorrelation function of the signal and the
cross-correlation function between the signal and the obser- Q(tn) =Q(tn—1) +g(tn,tn) [fl/(tN) — IJI(tN)Q(thl)]
vation noise can be respectively expressed in the form (2),

we have that the Wiener-Hopf equation (4) can be rewritten Q(to) =0pxp (11)
as

where0p,p denotes the x p dimensional matrix whose el-
h(ti, ti,tn)ri = Ruy(ti, ti) — Zh te, tj, tn)R(Ej, 1), to <t <ty ements are all zero.

Moreover,
®)
h(ti, tn,tn) = [d () — £/ (t, tae t
where the correlation function®R.(t,tj) = Rx(ti,tj) + (ts ) = | (/k) (:< N-1)] H(tn) 3
Ru(ti,tj) andR(ti, tj) = Rx(ti, tj) + Ruv(ti,tj) + Rux(ti,t}) are x v+ [0 (tn) — p' () QIn-1)] ()} (12)
factorizable kernels which can be expressed in the form
where the vectof’(t,ty) is recursively computed, from the
[N, to<tj<t initialization ' (ty, tx) = ¢/(tx) Q(tk), through the expression
Ruy(tis tj) { d'(t)u(ty), to<ti <t ©) / ,
Rit) =4 KN, <t <t Plotn) =fltotv-g)
DT R m)u(), to<ti <t +h(t, tns tn) [0 () — 1/ () Q(tn-1)] - (13)
with ¢/(t) = [a'(t)), 0’ (t),0{], n'(t) = [b'(6), B'(t), V(1) ], Proof.

To start with, we obtain a recursive equation for the im-
d'(t) = [b'(t), 00, ¥ (4)], andp’(t) = [a'(t), o' (t), A" (4) ], pulse response functidn(t,,t;,tn). For that, if we subtract

bounded vectors of dimensign=n-+m-+1, and0; denotes  {he equation (5) foty andty_1 and take (6) into account, we
thel-dimensional vector whose elements are zero. can write

In the next section, equation (5) will be used to design an
efficient fixed-point smoothing algorithm. Specifically, the ‘ _ o / _
proposed algorithm will allow us to compute the fixed-point [Nt ti,tn) — h(tk’t"tN 1 = =t tn, ) (tn)n (6)
smoother of the signad(ty), X(t/tn), for a fixed instant, <
tn, through a recursive expression where the initial condition - Z (ti, tj,tn) — h(ti, b 1) R(tj, 1)
is the filterX(ty /tk).

Then, if we introduce a functiog(t;,tn) satisfying the equa-

3. RECURSIVE FIXED-POINT SMOOTHING tion

ALGORITHM

In Theorem 1, with the above assumptions, a recursive least (t,t)ri = N (t) —
mean-squares algorithm for the fixed-point smoothing esti- gt tn)ri =N
mate of the signal is shown in linear discrete-time systems.

we obtain that

g(ti’tN)R(tJvti) (14)

M=

Theorem 1 Let {X(ti),ti > to} be a signal process satisfy-

ing the hypothesis establlshed in Section 2. The fixed-poin , _ , _ / _
smoothing estimate of the signdly), given a realization of ot 1) — Nltotiotu-1) = —Altot.tu) (tN)g(t"tN’(ll)s)
a sequence of observatiofig(ts),...,y(tn)}, is recursively

computed as follows: Moreover, following a similar reasoning for the equation

. . 14), we obtain the recursive equation ft;,tn) as
(/) = Kt /1) + ittt [ytn) — ' (etty )] &) quation i tn)

(1) gltitn) —gtitn-1) = —gltn,tn) K (t)g (b tn-1) - (16)
with the initial condition aty = t, the filter of the signal, Now, we proceed to derive the expression (10) for
. g(tn,tn). By takingt; =ty in (14) and using (6), we have
R(t/tc) = €' (t)e(t) (8)
N
The vectole(ty) obeys the recursive expression g(tn,tn)rn =n(tn) — S g(tj,tn)n' () H(tn) a7
=1
e(tn) = e(tn-1) +g(tn tn) [Y(tn) — ' (tn)e(tn-1)]  (9) =n(tn) — Q(tn)u(tn)
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where we have introduced thex p dimensional matrix Therefore, if we denote
N N
)= 2 slti-twn (18) )= 28l (22)
Q(to) =0pxp e(to) =0p

Hence, if we subtrad®(ty_1) from Q(tn), and use (16) and We conclude that the fixed-point smoother of the signal,
(18), the recursive equation (11) f@¥(tn) is derived. Fi- X(t/tn) satisfies the recursive expression (7) with the ini-
nally, using (11) in (17), it is easy to check thafty,tn) tialization atty = t, the filter of the signalR(tx/tx). From
satisfies the expression (10). (3) and using (21) and (22), the expression (8) for the filter

Next, following a similar reasoning, we establish the ex-of the signal is deduced. Moreover, by subtractérty 1)
pression (12) foh(t, t, tn). Specifically, if we put =ty in ~ from e(tn) and applying (16), the recursive equation (9) for
(5) and use (6) in the resultant equation, we get the vectore(tn) is immediate.

_q _ Remark 1 Notice that a LLMSE filtering algorithm of the
h(ti, tn, ) = d (ti) 1 (tn) — £ (b, ) () (19) signal in discrete-time systems is given by the equati@ps

where the functiorf (i, ty) is defined as (11)of Theorem 1.
N 4. NUMERICAL EXAMPLE
Ft tn) = Z (tioty, )0 (1}) (20) In this section, the behavior of the fixed-point smoothing es-

timates obtained from the LLMSE estimation algorithm pre-
sented in Theorem 1 is analyzed by means of a numerical

Then, by subtractinfj(t,tn—1) from f(t, tn) and using (15), example

we have In this example, we consider that the sighalt;),t >
, 0} is a Gaussian process with zero-mean and autocorrelation
£t tn) — £t tn-1) = h(te, tn, tn) N (tn) function
N-1
—h(tetn, K (tn) Y () tn-2)n' (1) Re(titj) =€tl 4.t >0 (23)
=1

Moreover, the observation noisé;) is assumed to be a cen-
As a consequence, from the definition (18) fQfty), we  tered white Gaussian process and the cross-correlation func-
obtain the recursive expression (13) for updatiiit,ty).  tion between the signal and the observation noise is
Furthermore, substituting (13) in (19), the equation (12) for

h(ty, tn, tn) is derived. Raf(ti,tj) = 0.1t7t7 (24)
Now, in order to determine the initial condition of (13),
f(t, tk), we first putty =ty in the Wiener-Hopf equation (5) It is clear that (23) and (24) are factorizable kernels of
) the form (2) witha(tj) = 7%, b(t;) = €, a(t) = y(t) = tZ,
B(t)=A(t)=0.1t3.
h(ti, s to)ri =Ryt ti) — Z (B, B R(;, ) ( l)\lext,(th)e efficiéncy of the proposed recursive fixed-point
=1 smoothing algorithm is checked for the observation noises
k with variance parameters= 0.25, r = 1 andr = 3. For that,
=c'(t)n Z (ti, tj, t) R(tj, ) we have written a program in MATLAB which simulates,

= in every case, the observations (1) and provides the fixed-
oint smoothers of the signal computed through the recursive
ormulas given in Theorem 1.
In particular, this program has been applied to calculate
N _ the optimum fixed-point smoother of the signdy), at the
hti.ti,t) = e (W8 (li, &) (@1)  fixed instant of timet, = 0.15, on the basis of the obser-
- g tionsy(t;), with t; =i/100 i = 1,...,100 Specifically,
Consequently, if we pufy =tk in (20) and use (21) and (18) vatiol r . 10 !
in the resultant equation, we find that the initial condition ont{r;/?of'(r)it) (;?grg%tlon oyfz%)} Islgat?\?adsggc:rr:g ggt?r?wr;\/t?ct)lr?n tﬁgt
the difference equation (13) fditty,ty) atty = ti is observation sefy(0.01),y(0.02). ... ,y(t),y(t + 0.01))} is
o considered, and so forth, unfi}(0.01),y(0.02),...,y(1)}
f(tk, t) = ' () Q(t) In Figure 1, the optimum fixed-point smoothers
X(0.15/ty) for r = 0.25, r =1 andr = 3 are compared.
Note that, the simulated value for signal tat= 0.15 is
x(0.15) = 0.7151 As could be expected, Figure 1 shows
a better behavior of the optimum fixed-point smoother for a

where we have applied the expression (6) in the last equalit
Thus, from (14), it is clear that

Finally, from the definition (3) for the fixed-point
smoother of the signdi(tx/tn) and using (15), we have

K(ti/tn) = X(t/tn-1) = hiti tn, th)Y(tn) smaller noise level.
o Nt Moreover, the performance of the above estimates is eval-
—h(titn,tn) () S g(t tn-)y(t) uated through the mean-square values (MSV) of the fixed-

=1 point smoothing errors of the signal. This MSV is computed
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Figure 1: Fixed-point smoothing estimat@.15/ty) of the
signal forr = 0.25(solid line),r = 1 (dotted line), ana = 3
(dashed line).

Variance parameter
of the observation noise

MSYV of the fixed-point
smoothing error

r=0.25 86333x 1074
r=1 0.0215
r=3 0.1976

Table 1: Mean-Square Values of the fixed-point smoothing
algorithm errors for = 0.25,r = 1, andr = 3.

by the expression

100
S (x(0.15) —(0.15/t;))?
i=16

Table 1 summarizes the MSV of the fixed-point smooth-
ing errors of the signal for the different observation noises
with variance parameters= 0.25, r = 1, andr = 3. From
these results we find that the MSVs are smaller and, conse-
qguently, the estimation accuracy of the fixed-point smoother
is improved, as the observation noise variance parameter de-
creases.
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