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ABSTRACT

The linear least mean-square fixed-point smoothing problem
in discrete-time systems is formulated in the general case
where the signal is any nonstationary stochastic process of
second order which is observed in the presence of an addi-
tive white noise correlated with the signal. Under the only
assumption that the correlation functions involved are factor-
izable kernels, an efficient recursive computational algorithm
for the fixed-point smoother is designed. Also, a filtering al-
gorithm is devised.

1. INTRODUCTION

In the last decades, the problem of estimating a random sig-
nal observed through a linear mechanism has been a topic
widely studied. Specifically, we can find an extensive litera-
ture concerning the design of recursive formulas for updating
and optimum estimate for some criterion of optimality such
as the minimization of the error variance.

In this framework, the (LLMSE) linear least mean-square
error estimation problem is reduced to the problem of solv-
ing a linear equation, called the Wiener-Hopf equation. The
solution to the Wiener-hopf equation, the impulse response
function of the optimal estimate, can be determined from the
knowledge of the correlation functions of the processes in-
volved. Thus, a method of solution to the LLMSE estimation
problems consists in imposing structural assumptions on the
properties of the correlation functions involved.

In this line, and under the assumption that the signal is
modelled by state-space system, the most known and used
LLMSE estimation algorithm is the Kalman filter [1]. Un-
fortunately, for some applications in many communication
problems, it is impossible to specify such state-space mod-
els for the signal and then the Kalman filter cannot be ap-
plied. Alternatively, a LLMSE estimation algorithm is pos-
sible under the only hypothesis that the correlation functions
involved are factorizable kernels [see, e.g., [2], [3], [4]]. In
fact, since factorizable kernels are suitable for expressing
correlation functions of general stationary or nonstationary
signal processes, these estimation algorithms will be widely
applied.

This paper is concerned with the LLMSE fixed-
point smoothing problem using covariance specifications in
discrete-time system involving correlated signal and noise.
This general estimation problem which includes correlation
between the signal and the observation noise is useful in
many engineering applications in stochastic control and com-
munications [5]. Then, by assuming that the covariance
functions of the signal and noise are factorizable kernels,
we get a recursive expression for the LLMSE fixed-point

smoother via an imbedding method, where the initial con-
dition is the filter of the signal. The proposed LLMSE fixed-
point smoothing algorithm, which includes the recursive for-
mulas for the computation of the filtering estimate, is pre-
sented in Theorem 1.

2. PROBLEM FORMULATION

In this section we formulate the discrete LLMSE fixed-point
smoothing problem involving correlated signal and observa-
tion noise.

Specifically, let{x(ti), ti ≥ t0} be a signal process which
is any real second-order nonstationary stochastic process,
with zero-mean and autocorrelation functionRx(ti , t j) =
E[x(ti)x(t j)], for ti , t j ≥ t0.

We consider that the signal is observed in the presence
of an additive white noise and the available observations are
given by a stochastic process{y(ti), ti ≥ t0} through the equa-
tion

y(ti) = x(ti)+v(ti) (1)

wherev(ti) is a zero-mean white noise process with autocor-
relation functionE[v(ti)v(t j)] = r iδi j , r i > 0, and correlated
with the signal. LetRx1x2(ti , t j) denote the cross-correlation
function between any two processesx1(ti) andx2(t j).

We assume that the autocorrelation function of the signal
and the cross-correlation function between the signal and the
observation noise are factorizable kernels of the form

Rx(ti , t j) =
{

a′(ti)b(t j), t0 ≤ t j ≤ ti
b′(ti)a(t j), t0 ≤ ti ≤ t j

Rxv(ti , t j) =
{

α ′(ti)β (t j), t0 ≤ t j ≤ ti
γ ′(ti)λ (t j), t0 ≤ ti ≤ t j

(2)

with a(ti) andb(ti) bounded vectors of dimensionn, α(ti)
andβ (ti) arem-dimensional bounded vectors, andγ(ti) and
λ (ti) arel -dimensional bounded vectors.

Then, using the available information from the set of ob-
servations{y(t1), . . . ,y(tN)}, we are interested in obtaining
the LLMSE estimator of the signalx(tk) for a fixed instant
of time tk < tN. It is well known that this estimator,̂x(tk/tN),
is the orthogonal projection ofx(tk) onto the space of linear
transformations of the observations set{y(t1), . . . ,y(tN)}.

According to the projection theorem, this element
x̂(tk/tN) exists, is unique and can be expressed as a linear
combination of the observationsy(t1), . . . ,y(tN) of the form
[6]

x̂(tk/tN) =
N

∑
j=1

h(tk, t j , tN)y(t j) (3)
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whereh(tk, ti , tN) is an impulse-response function which can
be determined from the Wiener-Hopf equation

E[x(tk)y(ti)] =
N

∑
j=1

h(tk, t j , tN)E[y(t j)y(ti)], t0 ≤ ti ≤ tN (4)

From the observation equation (1) and using the hypoth-
esis that the autocorrelation function of the signal and the
cross-correlation function between the signal and the obser-
vation noise can be respectively expressed in the form (2),
we have that the Wiener-Hopf equation (4) can be rewritten
as

h(tk, ti , tN)r i = Rxy(tk, ti)−
N

∑
j=1

h(tk, t j , tN)R(t j , ti), t0 ≤ ti ≤ tN

(5)

where the correlation functionsRxy(ti , t j) = Rx(ti , t j) +
Rxv(ti , t j) andR(ti , t j) = Rx(ti , t j)+ Rxv(ti , t j)+ Rvx(ti , t j) are
factorizable kernels which can be expressed in the form

Rxy(ti , t j) =
{

c′(ti)η(t j), t0 ≤ t j ≤ ti
d′(ti)µ(t j), t0 ≤ ti ≤ t j

R(ti , t j) =
{

µ ′(ti)η(t j), t0 ≤ t j ≤ ti
η ′(ti)µ(t j), t0 ≤ ti ≤ t j

(6)

with c′(ti) =
[
a′(ti),α ′(ti),0′l

]
, η ′(ti) =

[
b′(ti),β ′(ti),γ ′(ti)

]
,

d′(ti) = [b′(ti),0′m,γ ′(ti)], andµ ′(ti) =
[
a′(ti),α ′(ti),λ ′(ti)

]
,

bounded vectors of dimensionp = n+m+ l , and0l denotes
the l -dimensional vector whose elements are zero.

In the next section, equation (5) will be used to design an
efficient fixed-point smoothing algorithm. Specifically, the
proposed algorithm will allow us to compute the fixed-point
smoother of the signalx(tk), x̂(tk/tN), for a fixed instanttk <
tN, through a recursive expression where the initial condition
is the filterx̂(tk/tk).

3. RECURSIVE FIXED-POINT SMOOTHING
ALGORITHM

In Theorem 1, with the above assumptions, a recursive least
mean-squares algorithm for the fixed-point smoothing esti-
mate of the signal is shown in linear discrete-time systems.

Theorem 1 Let {x(ti), ti ≥ t0} be a signal process satisfy-
ing the hypothesis established in Section 2. The fixed-point
smoothing estimate of the signalx(tk), given a realization of
a sequence of observations{y(t1), . . . ,y(tN)}, is recursively
computed as follows:

x̂(tk/tN) = x̂(tk/tN−1)+h(tk, tN, tN)
[
y(tN)−µ ′(tN)e(tN−1)

]
(7)

with the initial condition attN = tk, the filter of the signal,

x̂(tk/tk) = c′(tk)e(tk) (8)

The vectore(tN) obeys the recursive expression

e(tN) = e(tN−1)+g(tN, tN)
[
y(tN)−µ ′(tN)e(tN−1)

]
(9)

with the initializatione(t0) = 0p and where

g(tN, tN) = [η(tN)−Q(tN−1)µ(tN)]

×{
rN +

[
η ′(tN)−µ ′(tN)Q(tN−1)

]
µ(tN)

}−1
(10)

with the p× p-dimensional matricial functionQ(tN) given
by

Q(tN) =Q(tN−1)+g(tN, tN)
[
η ′(tN)−µ ′(tN)Q(tN−1)

]

Q(t0) =0p×p

(11)

where0p×p denotes thep× p dimensional matrix whose el-
ements are all zero.

Moreover,

h(tk, tN, tN) =
[
d′(tk)− f ′(tk, tN−1)

]
µ(tN)

×{
rN +

[
η ′(tN)−µ ′(tN)Q(tN−1)

]
µ(tN)

}−1
(12)

where the vectorf ′(tk, tN) is recursively computed, from the
initialization f ′(tk, tk) = c′(tk)Q(tk), through the expression

f ′(tk, tN) = f ′(tk, tN−1)

+h(tk, tN, tN)
[
η ′(tN)−µ ′(tN)Q(tN−1)

]
(13)

Proof.
To start with, we obtain a recursive equation for the im-

pulse response functionh(tk, ti , tN). For that, if we subtract
the equation (5) fortN andtN−1 and take (6) into account, we
can write

[h(tk, ti , tN)−h(tk, ti , tN−1)] r i =−h(tk, tN, tN)µ ′(tN)η(ti)

−
N−1

∑
j=1

[h(tk, t j , tN)−h(tk, t j , tN−1)]R(t j , ti)

Then, if we introduce a functiong(ti , tN) satisfying the equa-
tion

g(ti , tN)r i = η(ti)−
N

∑
j=1

g(t j , tN)R(t j , ti) (14)

we obtain that

h(tk, ti , tN)−h(tk, ti , tN−1) =−h(tk, tN, tN)µ ′(tN)g(ti , tN−1)
(15)

Moreover, following a similar reasoning for the equation
(14), we obtain the recursive equation forg(ti , tN) as

g(ti , tN)−g(ti , tN−1) =−g(tN, tN)µ ′(tN)g(ti , tN−1) (16)

Now, we proceed to derive the expression (10) for
g(tN, tN). By takingti = tN in (14) and using (6), we have

g(tN, tN)rN =η(tN)−
N

∑
j=1

g(t j , tN)η ′(t j)µ(tN)

=η(tN)−Q(tN)µ(tN)

(17)
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where we have introduced thep× p dimensional matrix

Q(tN) =
N

∑
j=1

g(t j , tN)η ′(t j)

Q(t0) =0p×p

(18)

Hence, if we subtractQ(tN−1) from Q(tN), and use (16) and
(18), the recursive equation (11) forQ(tN) is derived. Fi-
nally, using (11) in (17), it is easy to check thatg(tN, tN)
satisfies the expression (10).

Next, following a similar reasoning, we establish the ex-
pression (12) forh(tk, tN, tN). Specifically, if we putti = tN in
(5) and use (6) in the resultant equation, we get

h(tk, tN, tN)rN = d′(tk)µ(tN)− f(tk, tN)µ(tN) (19)

where the functionf(tk, tN) is defined as

f(tk, tN) =
N

∑
j=1

h(tk, t j , tN)η ′(t j) (20)

Then, by subtractingf(tk, tN−1) from f(tk, tN) and using (15),
we have

f(tk, tN)− f(tk, tN−1) = h(tk, tN, tN)η ′(tN)

−h(tk, tN, tN)µ ′(tN)
N−1

∑
j=1

g(t j , tN−1)η ′(t j)

As a consequence, from the definition (18) forQ(tN), we
obtain the recursive expression (13) for updatingf(tk, tN).
Furthermore, substituting (13) in (19), the equation (12) for
h(tk, tN, tN) is derived.

Now, in order to determine the initial condition of (13),
f(tk, tk), we first puttN = tk in the Wiener-Hopf equation (5)

h(tk, ti , tk)r i =Rxy(tk, ti)−
k

∑
j=1

h(tk, t j , tk)R(t j , ti)

=c′(tk)η(ti)−
k

∑
j=1

h(tk, t j , tk)R(t j , ti)

where we have applied the expression (6) in the last equality.
Thus, from (14), it is clear that

h(tk, ti , tk) = c′(tk)g(ti , tk) (21)

Consequently, if we puttN = tk in (20) and use (21) and (18)
in the resultant equation, we find that the initial condition on
the difference equation (13) forf(tk, tN) at tN = tk is

f(tk, tk) = c′(tk)Q(tk)

Finally, from the definition (3) for the fixed-point
smoother of the signal̂x(tk/tN) and using (15), we have

x̂(tk/tN)− x̂(tk/tN−1) = h(tk, tN, tN)y(tN)

−h(tk, tN, tN)µ ′(tN)
N−1

∑
j=1

g(t j , tN−1)y(t j)

Therefore, if we denote

e(tN) =
N

∑
j=1

g(t j , tN)y(t j)

e(t0) =0p

(22)

we conclude that the fixed-point smoother of the signal,
x̂(tk/tN) satisfies the recursive expression (7) with the ini-
tialization attN = tk, the filter of the signal,̂x(tk/tk). From
(3) and using (21) and (22), the expression (8) for the filter
of the signal is deduced. Moreover, by subtractinge(tN−1)
from e(tN) and applying (16), the recursive equation (9) for
the vectore(tN) is immediate.

Remark 1 Notice that a LLMSE filtering algorithm of the
signal in discrete-time systems is given by the equations(8)-
(11)of Theorem 1.

4. NUMERICAL EXAMPLE

In this section, the behavior of the fixed-point smoothing es-
timates obtained from the LLMSE estimation algorithm pre-
sented in Theorem 1 is analyzed by means of a numerical
example.

In this example, we consider that the signal{x(ti), ti ≥
0} is a Gaussian process with zero-mean and autocorrelation
function

Rx(ti , t j) = e|ti−t j |, ti , t j ≥ 0 (23)

Moreover, the observation noisev(ti) is assumed to be a cen-
tered white Gaussian process and the cross-correlation func-
tion between the signal and the observation noise is

Rxv(ti , t j) = 0.1t2
i t3

j (24)

It is clear that (23) and (24) are factorizable kernels of
the form (2) witha(ti) = e−ti , b(ti) = eti , α(ti) = γ(ti) = t2

i ,
β (ti) = λ (ti) = 0.1t3

i .
Next, the efficiency of the proposed recursive fixed-point

smoothing algorithm is checked for the observation noises
with variance parametersr = 0.25, r = 1 andr = 3. For that,
we have written a program in MATLAB which simulates,
in every case, the observations (1) and provides the fixed-
point smoothers of the signal computed through the recursive
formulas given in Theorem 1.

In particular, this program has been applied to calculate
the optimum fixed-point smoother of the signalx(tk), at the
fixed instant of timetk = 0.15, on the basis of the obser-
vationsy(ti), with ti = i/100, i = 1, . . . ,100. Specifically,
the first estimation ofx(tk) is based on the observation set
{y(0.01),y(0.02), . . . ,y(tk)}. In the second estimation, the
observation set{y(0.01),y(0.02), . . . ,y(tk),y(tk + 0.01))} is
considered, and so forth, until{y(0.01),y(0.02), . . . ,y(1)}

In Figure 1, the optimum fixed-point smoothers
x̂(0.15/tN) for r = 0.25, r = 1 and r = 3 are compared.
Note that, the simulated value for signal attk = 0.15 is
x(0.15) = 0.7151. As could be expected, Figure 1 shows
a better behavior of the optimum fixed-point smoother for a
smaller noise level.

Moreover, the performance of the above estimates is eval-
uated through the mean-square values (MSV) of the fixed-
point smoothing errors of the signal. This MSV is computed
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Figure 1: Fixed-point smoothing estimatex̂(0.15/tN) of the
signal forr = 0.25 (solid line),r = 1 (dotted line), andr = 3
(dashed line).

Variance parameter
of the observation noise

MSV of the fixed-point
smoothing error

r = 0.25 8.6333×10−4

r = 1 0.0215
r = 3 0.1976

Table 1: Mean-Square Values of the fixed-point smoothing
algorithm errors forr = 0.25, r = 1, andr = 3.

by the expression

1
85

100

∑
j=16

(x(0.15)− x̂(0.15/t j))
2

Table 1 summarizes the MSV of the fixed-point smooth-
ing errors of the signal for the different observation noises
with variance parametersr = 0.25, r = 1, andr = 3. From
these results we find that the MSVs are smaller and, conse-
quently, the estimation accuracy of the fixed-point smoother
is improved, as the observation noise variance parameter de-
creases.
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