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ABSTRACT 
Nowadays a lot of methods for the estimation of Hurst’s co-
efficient (H) in time series are available. Most of them, even 
if very effective, need some a priori information to be ap-
plied (in particular about the stationarity of the series). We 
analyzed eight up-to-date methods (working both in time 
and in frequency domain) at work with four kinds of syn-
thetic time series (fBm, fGn, 1/f, FARIMA) in the range 
0.1≤H≤0.9. We built graphs for each method evaluating the 
quality of the estimation, in terms of accuracy (bias) and 
precision (STD) of the deviation from the expected estima-
tion value. Beginning from that, we formulated a procedure 
useful for a reliable estimation of H, using these existing 
methods, without any assumption on the stationarity of the 
time series. This procedure suggests to estimate, at first, the 
coefficient “alpha”, spectral slope in a bi-logarithmic scale-
estimator chart, next to the zero-frequency axis, of the un-
known time series. Once estimated alpha, i.e. an indirect 
estimation of the stationarity of the series, the procedure 
recommends the best method for the estimation of H, de-
pending on the stationarity value. 

 
Key words: Hurst’s Coefficient, Stationarity, Periodogram α 
coefficient 

1. INTRODUCTION 

In last decades, complete dedication of non-linear signal 
processing was paid to the evaluation of skilled methods for 
the estimation of Hurst’s coefficient in long memory fractal 
time series [1].  
Nowadays the trend is to overcome classical approaches 
“Hurst way”, e.g. the Rescaled Range Analysis, because of 
the strong estimation bias for series with H>0.7, and Auto-
correlation methods, useful only for large and persistent time 
series.  
The aim of this paper is to evaluate the effectiveness of the 
most used up-to-date tools for the estimation of the self-
similarity coefficient in completely unknown time series. The 
point is that some a priori information is required for a 
proper use of most of the existing estimation methods. E.g., 
the relation between the interpolated slope coefficient α of 
the log-log plot scale-estimator of most up-to-date methods 
and the coefficient H depends from the series stationarity. 
Very often these information are not available. Our aim is to 

plan a procedure useful to properly estimate the value of 
Hurst’s coefficient, using the existing methods, without any a 
priori knowledge about the stationarity of the signal. 

2. MATERIALS AND METHODS 

In this paper we considered eight different tools for the 
evaluation of Hurst’s coefficient: the Method of the Aggre-
gate Variance [2], the Method of the Modulus of the Aggre-
gate series [2], the Higuchi method [3], the Dispersional 
Analysis (DA) [4], the Detrended Fluctuation Analysis 
(DFA) [5], the Periodogram method [2] [6], the Allan factor 
method and the Fano factor method [7].  

The Aggregate Variance is a time domain method useful for 
non-stationary time series that obtains the multi-scale analy-
sis with the aggregation of adjacent points and measures the 
similarity in terms of variance. The Modulus of the Aggre-
gate series method is similar to the previous one but it uses 
modulus instead of variance. The Higuchi method is a time 
domain method useful for non-stationary series too, but per-
forms the multi-scale analysis with the creation of sub-
series, in following iterations, with points taken at different 
distances each other. In this case the similarity is described 
beginning from the partial sums of the original time series 
(derived from sub-series) and finding a normalized length 
(Higuchi length) of the sub-series. DA is the differential 
version of the Aggregate Variance method, useful for sta-
tionary series. DFA is the well-known estimator with de-
trend, working in the time domain. It is effective both with 
stationary and non stationary time series. The Periodogram 
is a frequency domain method, suited for stationary time 
series, that evaluates the slope of the spectrum (calculated 
by a Discrete Fourier Trasform) near the zero-frequency axis 
in a log-log plot. The value of this slope is correlated to the 
Hurst’s coefficient by known relations. Finally Allan and 
Fano factors are frequency domain methods, very close each 
other, that indirectly evaluate the value of the slope men-
tioned for Periodogram without the calculation of the Fou-
rier Trasform, used for stationary time series, too.  

The reliability of these methods was tested by applying 
theme to synthetic time series with a known Hurst coeffi-
cient. These series belong to the four most used methods in 
literature: fractional Brownian motion (fBm), fractional 
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Gaussian noise (fGn), 1/f power law noise and fractional 
auto-regressive integrated moving-average (FARIMA) 
model [8]. These numeric series have different mathematical 
and statistical properties, so it was possible evaluating the 
effectiveness of the estimation methods, in very different 
conditions. The fBm is a generalization of the concept of 
Brownian motion, in which the innovation between a sample 
and the successive one is not necessarily un-correlated. In 
this way a non-stationary stochastic process is obtained. 
Directly derived from fBm, by discrete derivation, is the 
process called fGn that produce a stationary stochastic time 
series. The 1/f power law noise (later 1/f) is a synthetic non-
stationary time series obtained by the anti-transformation of 
a synthetic spectrum (with uniformly distributed phase), 
built with a desired slope. FARIMA(0,H,0) (with Gaussian 
innovations), at last, is a sampling of a fGn process, built 
with a fractional integration of order d (with d = H + 1/2) i.e. 
a convolution with a filter hd whose z-trasform is hd(z) = (1- 
z)-d [9], of an ARMA(0,0) process. 

The performance evaluation of the presented methods was 
made by applying each method to five realization of each 
synthetic time series. A “realization” is composed by nine 
numerical series of 50000 points, one for each value of H in 
0.1≤H≤0.9, with step 0.1. Were non-existent in literature, the 
required relations to estimate H beginning from the results 
of the different methods were investigated. For clarity, in 
Table 1, we list all the relationships between the value of 
slope obtained from the bi-logarithmic scale-estimator chart 
of each method and the Hurst’s coefficient for each kind of 
synthetic time series analyzed. Once calculated all H values, 
we built confidence statistics (mean and STD) for estima-
tions and we judged each method in terms of deviations 
from linearity and bias. Finally, for each series generation 
model and for each value of H, we evaluated which was 
(were) the best method(s). Figure 2 summarizes the results. 

3. RESULTS 

We obtained graphs for each method representing mean 
value and standard deviation for each kind of synthetic time 
series at each H value (0.1≤H≤0.9) (not shown here, see 
[10]). Beginning from these we built graphs representing the 
deviation of the estimation made by each method, for each 
kind of time series, for every 0.1≤H≤0.9 and from the ex-
pected estimation value. By studying this last series of graphs 
we observed (see Figure 2): 
 
fBm series: the estimators operating in time domain best fit-
ted the expected values for fBm series, in the central region 
of the range 0<H<1. Is detectable a polarization of estima-
tions toward H=0.5. As expected, Periodogram performs 
unsatisfactory evaluations for non-stationary time series.   
For the whole range 0.1≤H≤0.9, we point out: for fBm with 
H<0.3 the best method is DFA; for H>0.6 Aggregate Vari-
ance, Modulus of the Aggregate series and Higuchi are sug-
gested. In the range 0.3≤H≤0.6 the performances of all the 
time domain methods are similar. 

fGn series: in the whole range 0.1≤H≤0.9 the performances 
of DFA, DA and Periodogram are similar. Fano and Allan 
factor are satisfactory only for H=0.1.  
1/f series: for 0.3≤H≤0.8 the most reliable methods are 
Modulus of the Aggregate series, Higuchi and DFA. The 
estimations performed by Periodogram are affected by a con-
stant bias so its use is advisable for time series with boundary 
values of H (H near to 0* and 1-) where others methods ap-
pear as unreliable.  
FARIMA series: no method had reported excellent perform-
ance for a meaningful range of variation of H.  
 
As expectable, a first distinction is detectable: non-stationary 
time series are best analyzed by time domain methods and 
stationary series by frequency domain methods. DFA assures 
good quality performances for both stationary and non-
stationary time series. This characteristic derives from the 
operation of detrending operated in DFA. Moreover DFA is 
characterized by a relation between the slope obtained from 
the log-log scale-estimator plot and the coefficient H which 
is identical for non-stationary and stationary real time series 
(i.e. fBm, fGn and 1/f). It is necessary here noting that the 
DFA directly estimates the spectral slope (usually called α, 
here P for Periodogram and DFA), as Periodogram, that have 
a continuous range (-1<α<3) for both stationary and non sta-
tionary time series (For -1<α<1 the series examined is sta-
tionary; for 1<α<3 the series is non-stationary and for α<-1 
or α>3 the series is not a fractal time series [11] [12] [13]). 
Unfortunately Periodogram fails in non-stationary series H 
estimation because it is based on Fourier Trasform. 
Beginning from the above remarks an analysis procedure 
useful to properly estimate the value of Hurst’s coefficient 
without any a priori knowledge of the signal can be inferred. 
This procedure is: 
First step: estimation of P (or α) of the unknown time series 
with DFA. Beginning from this first estimation of P, it’s pos-
sible to value the “stationarity degree” of the series. The 
boundary value of P between stationarity and non-stationarity 
is α = 1. We have decided to distinguish three different “sta-
tionarity zones” in α range. “High stationarity” for α<0.5, 
“High non-stationarity” for α>1.5 and a transition zone for 
0.5≤α≤1.5.  
Second step: for High stationary time series the best estima-
tions are assured by DA or Periodogram; for High non-
stationary series are recommended Modulus of the Aggre-
gate series, Higuchi or DFA itself and for intermediate be-
haviors the value of H from DFA of step one is reliable. 

4. DISCUSSION 

The graphs obtained in this work are an useful handbook for 
the Hurst analysis of time series. Once estimated H for an 
unknown series, in fact, is possible to evaluate the quality of 
the estimation, in terms of accuracy (bias) and precision 
(Standard Deviation). In this stage, these remarks are valid 
for good-Signal-to-Noise-Ratio (SNR) time series.  
The main target got in this paper is the formulation of the 
analyzing procedure for the blind estimation of Hurst’s expo-
nent for time series. The procedure, in step two, suggests for 
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high stationary and high non-stationary zones a couple of 
methods. It’s probably opportune to apply both methods pro-
posed and make the mean of the results. This opportunity 
should be evaluated examining the graphs presented above.   
As explained before, the advantage of a blind method for the 
estimation of H is to avoid the choice between the relations 
useful for stationary time series and non-stationary time 
series (Fig.2). But why not simply use a stationarity index 
instead of DFA in step one? An obvious answer is because if 
the time series is highly non stationary or have a intermedi-
ate behavior the result of step one is already the H estima-
tion. A less obvious answer is because in the range of varia-
tion of α the boundary line between stationary and non-
stationary behavior is punctual. This is a problem because 
for some methods the relation between P (or α) and H is not 
the same for stationary and non stationary time series (for 
example for Periodogram). A little error during the estima-
tion of α, i.e. during the evaluation of stationarity, could 
produce a big error in terms of H. So it’s advisable, in our 
opinion, use a method that directly estimates α with a good 
linearity in the neighborhood of α =1.  
The method proposed presents some criticality in presence 
of important discontinuity of the signal. For example with 
Lévy flight processes [14]. We experimented this condition 
with a biological signal (see Example of application): the 
fetal heart rate (FHR) signal. This process, for long registra-
tions, can be assumed as a Lévy flight. Considering stretches 
without changes in the “fetal activity”, however, FHR is 
assimilable to an fBm process (P≈1.5 “transition zone”). 
Analyzing the whole signal, was necessary to replace DFA 
with Periodogram. Only a  frequency domain method, in 
fact, where is calculated the spectral slope in proximity of 
the zero-frequency axis, is insensitive to very high fre-
quency contributes. We verified that the Hurst’s exponent 
estimated for the whole time series by this “modified 
method” equals that estimated by the “normal one” for 
stretches without changes in the “fetal activity”. This trick 
however, can be used only for time series with α≤1.5. In 
very high non-stationary series, as seen above, Periodogram 
method is useless. 
Furthers developments of this work must be the analysis of 
the performances of methods varying the number of points of 
the series and, above all, the noise superimposed to it.  
Build the graphs of deviation from the expected estimation 
value at different noises, will make simpler to comment                                                        

the accuracy and the precision of the estimate in “real cases”. 
Finally, in the number of the methods analyzed, must be in-
cluded other up-to-date methods not still studied in this con-
text; for example we refer to the Wavelet Trasform Modulus 
Maxima (WTMM) [9].      
 

5. EXAMPLE OF APPLICATION 
 
We tested the effectiveness of the procedure with the FHR 
series [15]. The fetal heart rate (FHR) is the recording of the 
electrical activity of the heart of the fetus. The FHR series is 
a fractal time series characterized by periodical “changing of 
activity” that, from the signal analysis point of view, assimi-
late FHR to a Lévy Flight process. We applied our procedure, 
with the shrewdness shown in discussion, i.e. using Periodo-
gram in the First step, to evaluate the Hurst’s coefficient of 
heart rate series of healthy fetuses (53 recordings) and of 
fetuses affected by intra-uterine grow retardation (IUGR) (46 
recordings). IUGR regards particularly a retardation in the 
autonomous nervous system development. We first applied 
Periodogram and found a mean  value approximately equal 
to 1.6 for both populations. That means a border line value 
between transition zone and non-stationarity zone. This result 
is in accordance with the literature [16] [17].  So we decided, 
according to the “Second step”, to analyze stretches without 
changes in the “fetal activity” for both groups with DFA and 
obtained that coefficient H is able to distinguish the two 
population (see Fig. 1).  

 
 
Fig. 1: H values estimated for healthy patients (line 2) and 
IUGR patients (line 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Method Relation for fBm and 1/f Relation for fGn and 

FARIMA 
Aggregate Variance H = P/2 + 1 / 
Modulus of the Aggregate series  H = P + 1 / 
Higuchi H = P + 2 / 
DFA H = P(2) - 1 HfGn = P(2) - 1,HFA= 2P(2)-1* 
DA / HfGn = P + 1, HFA emp.* 
Periodogram H = (P – 1) / 2 H = (P + 1) / 2 
Fano factor / HfGn = P/2, HFA = P – 1*       
Allan factor / HfGn = P/2, HFA = P – 1*     

* marks all the relation calculated in our work               emp. Marks an empirical relation, fitted from data. 
 
Tab. 1: List of the relationships between the value of slope obtained from the bi-logarithmic scale-estimator chart of 
each method (P) and the Hurst’s coefficient (H) for each kind of synthetic time series analyzed. 

1

2
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This result derive from the autonomous nervous system de-
velopment retardation. This lets up systemic controls and 
made the sum of central and peripheral heart rate controls 
less “chaotic”. 

6. CONCLUSIONS 

In this work we obtained a whole of statistics to evaluate the 
quality of the estimations of the Hurst’s exponent made by 
different estimation methods. The analysis of the perform-
ances was made for different kinds of synthetic time series 
(fBm, fGn, 1/f and FARIMA), for each value of H in the 
range 0.1≤H≤0.9 with step 0.1, for eight different methods: 
Aggregate Variance, Modulus of the Aggregate series, Higu-
chi, Dispersional Analysis (DA), Detrended Fluctuation 
Analysis (DFA), Periodogram, Allan factor and Fano factor. 
We obtained statistics made by the mean and standard devia-
tion of five estimations on different time series and we built 
graphs representing the deviations from the expected value,  
for each method, for each kind of time series and for each 
value of H. The graphs obtained are useful to evaluate the 
quality of the estimation, in terms of accuracy (bias) and 
precision (Standard Deviation). Beginning from these 
graphs we elaborated a procedure able to estimate the 
Hurst’s coefficient without any knowledge about the station-
arity of the series in exam. This procedure is made up from 
two steps: 
First step. Estimation of P (or α) of the unknown time series 
with DFA. Beginning from P, it’s possible to value the sta-
tionarity of the series. We have decided to distinguish three 
different “stationarity zones” in α range. “High stationarity” 
for α<0.5, “High non-stationarity” for α>1.5 and a transition 
zone for 0.5≤ α≤1.5.  
Second step. Estimate of H as follows: for High stationary 
time series the best estimations are assured by DA or Perio-
dogram; for High non-stationary series are recommended 
Modulus of the Aggregate series, Higuchi or DFA itself and 
for intermediate behaviors the value of H from DFA of step 
one is reliable. 
We are now developing this work on other estimation meth-
ods (as WTMM) and at different conditions of SNR.  
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 H=0.2(αfBm,1/f=1.4; αfGn,Farima= -0.6) H=0.5 (αfBm,1/f = 2; αfGn,Farina = 0) H=0.8 (αfBm,1/f =2.6; αfGn,Farima= 0.6) 
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Fig. 2: Graphs representing, for each kind of time series, the deviation of the estimation, made by each method  for H=0,2 
H=0,5 and H=0,8,  from the expected estimation value. 1=Aggregate Variance, 2=Modulus, 3=Higuchi, 4=DFA, 5=DA, 
6=Periodogram, 7=Fano, 8=Allan.  
 
     =  Methods not used for the synthetic series in exam.  
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