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ABSTRACT 
 
           Given the statistically multiplexed stream observations of 
two independent and different types of traffic streams, this paper 
examines the problem of determining the degree of mixing. In data 
networks a common example of such a pair of different stream 
would be one conforming to the traditional Poisson model with an 
exponential inter-arrival distribution and the other obeying long-
range dependent traffic characterized by a heavy-tailed distribution. 
The paper provides an expression for the probability density 
function of the inter-arrival time of the mixed stream in terms of 
those of the input streams for the general case. As an example, we 
consider a mixed output traffic stream for the specific case of 
multiplexed Poisson and heavy-tailed processes and an approach is 
provided to estimate input parameters from the first and second 
order statistics. For arrival rate estimation of the input streams, we 
propose a look–up table approach based on nearest neighbor 
search. The simulation results demonstrate that the estimated 
arrival rates and the moments are indeed close to their respective 
true values. 
Keywords: Statistical Multiplexing, parameter estimation, heavy- 
tailed. 
 

1. INTRODUCTION 
            
          In data networks, statistical multiplexers have extensively 
been a part of packet switches and routers. In the statistical 
multiplexing scheme, various traffic streams that arrive on links of 
fixed or varying bandwidth are served on a first-come first-serve 
(FCFS) basis, where a finite buffer space is allocated for queuing 
purposes. Under heavy traffic volume, packet loss/delay occurs at 
the outgoing link and hence statistical multiplexers are intended to 
decrease packet loss/delay using better queuing strategies thereby 
increasing link utilization. Estimation of the arrival rates of the 
input traffic streams from the knowledge of the multiplexed stream 
can facilitate in improving the link utilization. Studies in traffic 
engineering have demonstrated extensively over the last decade that 
various instances of packet traffic such as Ethernet LAN traffic [1], 
aggregate packet streams [2] and Variable Bit-Rate (VBR) video [3, 
4] exhibit statistical self-similarity and long-range dependence, 
typically attributed to the aggregation of heavy-tailed ON-OFF 
processes. Recently, it has also been shown that superposition of 
many voice streams possess burstiness which leads to packet 
delays under heavy loads [5]. On the other hand, there are 

instances of traffic that fit conventional Poisson queuing models. 
Packets of different traffic streams are often mixed onto a single 
outgoing link through statistical multiplexing or superposition [6]. 
Thus, it is conceivable that there are instances of mixing of various 
types of traffic streams through this process. 
          This paper examines the problem of determining the degree 
of mixing of two independent streams of traffic from observations 
of their statistically multiplexed stream. The independent streams 
are assumed to arise from different statistical models. Initially, the 
paper provides a general expression for the PDF of the inter-arrival 
time mixed stream in terms of the PDF of the input inter-arrival 
times. An example of a pair of different stream types would be one 
conforming to the conventional Poisson model and the other 
obeying long-range dependence (LRD). The latter type of traffic is 
typically characterized by heavy tailed distributions such as a 
Pareto distribution. Both types of traffic are known to occur 
typically in data networks. The Poisson model is prevalent in 
telephone-type traffic while LRD has been found to be widespread 
in various instances of data traffic such as Ethernets, variable bit 
rate video and other types of compressed traffic streams.  
          The situation considered is depicted in Fig. 1. If λ is the rate 
of packet arrival for stream 1and µ  is that for stream 2, then the 

fractional contribution of stream 1 to the mixed stream is 
λ

λ µ+
, 

while that of the second stream is
µ

λ µ+
. The problem addressed 

amounts to determining these fractions from the statistics of the 
output stream. It is assumed that the form of the PDFs of the two 
traffic streams are know but their parameters are not. Thus the 
problem can alternatively be seen as estimating these parameters 
from the mixed stream. 
         Various possibilities arise as to how one might estimate the 
statistics of the mixed stream. The most obvious route is to 
estimate the PDF of the mixed traffic and then fit the PDF model 
to the estimate. This clearly means estimatingλ and µ  according to 
some criterion such as least squares, where λ and µ  are the 
parameters of interest of the input streams respectively. Another 
possibility is to estimate traffic statistics and determine the values 
of λ and µ  that best generate these statistics according to the 
model. Since two parameters are involved, we need at least two 
statistics, say the mean and the variance to obtain the estimates. 
We take the latter course in this work. 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



 

Stream 2 

Stream 1 

Mixed Stream 
Statistical 

Multiplexing 

 

Fig. 1. Statistical Multiplexing of independent streams. 

 
2. DISTRIBUTION OF MULTIPLEXED 

STREAM 
               

In this section we derive the expression for the 
probability density function (PDF) of the time interval between 
any random instant of non-arrival to the next arrival of a traffic 
stream. We then provide an expression for the PDF of the inter-
arrival time of the mixed stream in terms of the PDFs of the input 
the inter-arrival times.  

Suppose X denotes the inter-arrival time for a random 
arrival process A. Let ( )Xf x  be the PDF of X. Let ' ( )

X
f x  be the 

PDF of the random variable 'X  denoting the time interval between 
an arbitrary instant of no arrival of the process A and its next 
arrival as shown in Fig. 2 . 
Lemma 1: With ( )XF x  denoting the cumulative distribution 

function (CDF) of X and { }E X  its expected value, the PDF of the 

random variable 'X  is given by 

                                   
{ }'

(1 ( ))
( ) X

X

F x
f x

E X
−

= .                                 (1) 

Proof: Let λ  be the average arrival rate for the process A. 
Then  
                      (arrivalinelementdxatx)P dxλ=                        (2) 

Therefore 
              ( ) '

' ( )XP x X x dx f x dx≤ ≤ + =                          (3) 

For any arrival process, one should note that the time reversal does 
not change the distribution of the inter-arrival time. In other words, 
if B is an arrival process such that for every time instant t for which 
there is an arrival for process A, there is an arrival at –t for B and 
vice versa, then the inter-arrival time for B also has PDF ( )Xf x . 

Thus 

( )
( )( )

' onearrivalofprocess ininterval
of secandnoarrivalinnext sec

1 X

A
P x X x dx P

dx x

F x dxλ

 
≤ ≤ + =  

 
= −

      (4) 

Also, the arrival rate for stream 1, λ is related to the expected value 
of inter-arrival time as 

                                        
{ }
1

E X
λ =                                             (5) 

Hence from (3) and (4) we have  

                     ( )( )' ( ) 1 XX
f x dx F x dxλ= −                       (6)  

Equation (1) is obtained by substituting (5) in (6).  
That the right-hand-side of (1) integrates to a value of one is 
assured by the fact that for a random variable taking only positive 
values, the condition 2lim ( ) 0Xx

x f x
→∞

→  holds, and thus 

{ }
0

(1 ( ))XE X F x dx
∞

= −∫ [7]. It can also be verified from (1) that for 

Poisson arrival with exponential inter-arrival 
distribution ( ) ( )x

Xf x e u xλλ −= , where ( )u x  is the unit step 

function, ' ( ) ( )XX
f x f x=  as is to be expected for a memoryless 

process. 
 

dx 

X’ 

no arrival 

arrival 

xà 

 
Fig. 2. Time interval between arbitrary instant and next 

arrival  

Corollary to Lemma 1: 
                             ( ) { } ( )''X Xf x E X f x= −                              (7) 

where ( )'
'Xf x  is the derivative of ( )'Xf x . 

Proof: Differentiating both sides of Equation (1) we have the 
result. 
       Next we derive the PDF of the inter-arrival of the multiplexed 
stream. Suppose X is the inter-arrival time for stream 1, Y is the 
inter-arrival time for stream 2 and Z is the inter-arrival time for the 
multiplexed stream. Also, let 'X , 'Y  and 'Z  be the respective 
times for these processes between an arbitrary instant of no arrival 
and the next arrival. Then, 
Theorem 1: The probability density function of the inter-arrival time 
of the multiplexed stream Z is given by 

         { }
{ } { }

{ } { }

2
(1 ( ))(1 ( ))

( )
( ) ( )( ) ( )

X Y

Z
X Y

F x F x
E X E Y

f x E Z
f x f xA x B x
E X E Y

 − − + 
 =  
 +
  

     (8) 

where
{ }0

(1 ( )
( ) 1

x
YF u du

A x
E Y

−
= − ∫ , 

{ }0

(1 ( )
( ) 1

x
XF u du

B x
E X

−
= − ∫ ,  

{ } 1
E X

λ
= , { } 1

E Y
µ

=  and { } 1
E Z

λ µ
=

+
.Here ( )XF x and 

( )YF x are the cumulative distribution functions of X and Y 

respectively. 
Proof:  

            ( ) ( ) ( )
( ) ( )

' ' '

'

P x Z x dx P x X x dx P Y x

P x Y x dx P X x

≤ ≤ + = ≤ ≤ + >

+ ≤ ≤ + >
   (9) 
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     ' ' ' ' '( ) ( ) ( ) ( ) ( )Z X Y Y X
x x

f x dx f x dx f u du f x dx f u du
∞ ∞

⇒ = +∫ ∫      (10) 

      ' ' ' ' '( ) ( ) ( ) ( ) ( )Z X Y Y X
x x

f x f x f u du f x f u du
∞ ∞

⇒ = +∫ ∫              (11) 

Differentiating (11) and substituting it in equation (7)  we 
have, 

 
{ } ( )

{ }

'
'

' '
' ' ' ' ' '

( )

2 ( ) ( ) ( ) ( ) ( ) ( )

Z Z

X Y X Y Y X
x x

f x E Z f x

E Z f x f x f x f u du f x f u du
∞ ∞

= −

 
= − − 

 
∫ ∫

(12) 

Using (1), we have 

{ } { } { }' ' '

(1 ( )) (1 ( )) (1 ( ))
( ) , ( ) , ( )X Y Z

X Y Z

F x F x F x
f x f x f x

E X E Y E Z
− − −

= = =  (13) 

Equation (8) follows by substituting (13) in (12) where 

{ }0

(1 ( )
( ) 1

x
YF u du

A x
E Y

−
= − ∫ , 

{ }0

(1 ( )
( ) 1

x
XF u du

B x
E X

−
= − ∫ . In chapter 7 

of [8] the author evaluates the PDF of the inter-arrival time of N 
pooled streams. For two memoryless arrivals with PDF  

( ) ( )x
Xf x e u xλλ −=  and ( ) ( )x

Yf x e u xµµ −=  the output PDF is 

given as 
                               ( ) 2 ( )( ) ( ) x

Zf x E Z e λ µλ µ − + = +  .                (14) 

Integrating both sides of (14) we have ( ) 1/( )E Z λ µ= + which 
confirms the form of (12). For e.g. if all of arrivals have the same 
exponential inter-arrival distribution ( ) ( )x

Xf x e u xλλ −= , then from 

(8) we have ( ) ( )N x
Zf x N e u xλλ −=   and hence is a special case of 

(12). 
 

3. ESTIMATION OF THE ARRIVAL RATES 
          
           Knowing the form of the PDFs of the input streams, 
determines the form of the PDF of the multiplexed stream as 
shown in (12). In principle, estimating the statistics of Z based on 
its observations can therefore be used to determine the parameters 
of its PDF, namely, λ and µ . It is difficult to derive expressions 
for these parameters for the general case. We therefore develop 
expressions for one case for illustration, namely, that of statistical 
multiplexing of Poisson and heavy-tailed traffic. 
         We will assume that the Poisson traffic to have an inter-
arrival time X with an exponential PDF ( ) x

Xf x e λλ −= , where the 

average packet arrival rate for this stream is λ  and { } 1
E X

λ
= . The 

CDF is given by ( ) ( ) ( )1 x
XF x e u xλ−= − . Suppose the inter-arrival 

time distribution Y for the heavy-tailed traffic is Pareto-distributed 
as  

                        
( 1) 1

( )
0 otherwise

k

Y

k x x
f x

− − ≥= 


                  (15) 

where 3k > . The average time interval between packets of the 

heavy-tailed traffic is then given by { } 1
2

k
E Y

k
−

=
−

. The average 

arrival rate (denoted by µ ) is given by { }1/ E Yµ = . The CDF is 

given by ( ) ( ) ( )11 1k
YF x x u x−= − − . Thus the average packet rate 

of the mixed stream traffic (denoted by ν ) is given by = +  ν λ µ .  

Proposition 1: The PDF of the inter-arrival time of the mixed 
stream consisting of a Poisson traffic with inter-arrival time X that 
is exponentially distributed, ( ) x

Xf x e λλ −= and heavy-tailed traffic 

with the inter-arrival time Y that is Pareto-distributed as in (15), is 
given as 

  
( )

2
2

2 0 1
( )

( )
1 2 1

( ) 2

x

Z k x

e
x x

f x
x e k x x x

k

λ

λ

λ
µ λ λµ

λ µ

µ λλ
λ µ

−

− −


+ − < < += 

  − + − >  + − 

           (16) 

Proof:  Substituting for A(x) and B(x) in (8), for 0 1x< < , 
we obtain ( ) 1A x xµ= − and ( ) xB x e λ−=  
Substituting these back into equation (8), we have the PDF of Z as 

               ( )( ) 2 0 1
( )

x

Z

e
f x x x

λλ
µ λ λµ

λ µ

−
= + − < < +

          (17) 

For 1x > , 2( )
2

kA x x
k

µ −−
=

−
and ( ) xB x e λ−= ,  

        
2

2( ) 1 2 1
( ) 2

k x

Z

x e
f x k x x x

k

λµ λ
λ

λ µ

− −  = − + − >  + −  
.           (18) 

Hence the result.  
The valid range of 0.5 1µ< <  and 0λ > .The CDF of Z is given 
by integrating (15) and (16) over the valid range as follows, 

                ( )
( )

1

2

(1 ) 0 1
( )

(1 )( )
( ) ( )

1

x
x

k x
Z

k x

xe e x

F x e x e

e x e x

λ
λ

λ λ

λ λ

λµ
λ µ

µ λ µ
λ µ λ µ

−
−

− − −

− − −


+ − < < +

 −= − +
+ +

 − >


.          (19)         
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Fig. 3. PDFs of the mixed stream (a), (c) and their respective 
CDFs (b), (d). 
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         Examples of the PDFs are shown in Fig. 3(a) & (c) for the 
pairs 2.3, 0.65λ µ= = and 1, 0.95λ µ= = respectively. The funct- 

ion ( )Zf x  has a discontinuity at x=1 as seen from Fig. 3(a) & (c). 

This discontinuity is not obvious when λ µ?  as shown in Fig. 
3(a). The CDFs of the density functions are depicted in   Fig. 3(b) 
& (d) respectively.  Fig. 4(b) & (d) shows the histogram of the 
mixed stream obtained by statistical multiplexing along with the 
true PDF for 2.3, 0.65λ µ= =  and 1, 0.85λ µ= =  respectively. 

The closeness of the histogram to the true PDF provides a strong 
verification of the accuracy of the derivation leading to the results 
in (8) and (16). The corresponding multiplexed stream is depicted 
in Fig. 4(a) & (c) 
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Fig. 4. (a)&(c) Multiplexed stream, (b)&(d) Histogram of 
multiplexed stream Z superimposed on the output PDF 
generated using equation (16) for various arrival rates. 

 
Proposition 2: The nth moment for the mixed stream Z knowing the 
form of the PDF of the input streams is given as 

   

{ }

{ }

1

( , ) ( )
( )

2 ( 1 ) (1 )( 2 )( 1 )
(1 )

( 1) ( , )
( ) ( ) ( )

2 (1 )( 2 )

n

n

E Z a n n

n n n

n a n e

n

λ

β

λλ λ µ µ
λ µ

µ
µ β µ β β

µ

β β λ
λ λ µ λ µ λ µ

µ µλ µ λ β

−

− +

 
= + − + 

+ 
 

+ + − + − + − + − − 
 Γ − + −

− + + + + 
+ + − + + −

        (20) 

where 
1

0

( , ) n xa n x e dxλλ −= ∫  and
2
1

µ
β

µ
−

=
−

.The recursive equation 

for ( , )a n λ  is given as 

                      
1

( 1, ) ( , )
n e

a n a n
λ

λ λ
λ λ

−+
+ = −                              (21) 

with the initial condition 

                           
1

0

1
(0, ) x e

a e dx
λ

λλ
λ

−
− −

= =∫ .                             (22) 

Proof: Follows directly upon evaluating the integral for { }nE Z  

using (16) 

         { }
1 12

1

0 0

2

0 1

(2 )
( ) ( )

(2 )
( , ) ( 1, )

( ) ( )

n n x n x

for x

E Z x e x e

a n a n

λ λλ µ λ µλ
λ µ λ µ

λ µ λ µλ
λ λ

λ µ λ µ

− + −

< <

+
= −

+ +

+
= − +

+ +

∫ ∫              (23) 

      

{ } 1

2

2

3

1

( 1)
( , )

(1 )( )
2 ( 2)

( 1 , )
( )

(1 ) ( 3)
( 2 , )

( )

n
n

n

n

for x

n
E Z a n

n
a n

n
a n

β

β

β

µ β
β λ

µ λ µ λ
µλ β

β λ
λ µ λ

λ µ β
β λ

λ µ λ

− +

− +

− +

>

Γ − + = − − + − +  
Γ − + − + − + +  

− Γ − + − + − +  

      (24) 

Using ( 1) ( )n n nΓ + = Γ  and 
1( 1, ) ( , )n ea n a n

λ

λ λ
λ λ

−++ = −  

we have 

     

{ }

{ }

1

( , ) ( )
( )

2 ( 1 ) (1 )( 2 )( 1 )
(1 )

( 1) ( , )
( ) ( ) ( )

2 (1 )( 2 )

n

n

E Z a n n

n n n

n a n e

n

λ

β

λλ λ µ µ
λ µ

µ
µ β µ β β

µ

β β λ
λ λ µ λ µ λ µ

µ µλ µ λ β

−

− +

 
= + − + 

+ 
 

+ + − + − + − + − − 
 Γ − + −

− + + + + 
+ + − + + −

    (25) 

To evaluate the correctness of proposition 2 we consider an 
example for n=1. For this example we have, 

{ } { }2 1
(1, )

( ) ( )
e

E Z a
λ λλ

λ
λ µ λ µ

− + 
= + + + 

 which simplifies to 

{ } 1/( )E Z λ µ= +  where ( )2(1, ) 1/ 1 /a e eλ λλ λ λ− −= − −  . 

 
3.1 Algorithm 
           In this section we provide an estimation procedure for 
estimating the arrival rates of the exponential and Pareto density 
functions, ˆˆ[ , ]µ λ for measured statistics of the mixed stream. The 
measured statistics can be any moment of the mixed stream which 
is a function of [ , ]µ λ . For simplicity, we choose the first and the 
second moments (fmom, smom) in this paper. The following 
procedure explains the estimation algorithm. Initially we form a 
look-up table with coarse steps of [ , ]µ λ  and we compute the 
Euclidean distance to choose the minimum distance points. The 
surface of E(X) and E(X2) for all pairs of [ , ]µ λ  is shown in Fig. 5. 
Then we form look-up table around the minimum distance points 
and the algorithm is iterated until the required accuracy δ  is 
reached. The algorithm is given as follows 

ˆˆ[ , ]µ λ  = procedure FindParam(fmom, smom) 

(a) Compute  { }ijE X and { }2

ij
E X using equation (7) ∀  

( , )i jµ λ  with a given step size, where 0.5 1µ< <  and 0λ > . 

(b) Calculate  Euclidian distance between  (fmom, smom)  

        and { } { }( )2,
ij ij

E X E X ∀ ( , )i jµ λ . 
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(c) if  2

,
min( { } )iji j

fmom E X δ− ≤  and  

       2 2

,
min( { } )iji j

smom E X δ− ≤ then ˆˆ[ , ]µ λ = ( , )i jµ λ  

        else decrease the step size 
        end    

4. SIMULATION RESULTS 
            
           In the simulation setup, we estimate the parameters of the 
input streams from the moments of the multiplexed stream. 
Initially we generate synthetic traffic based on Poisson and heavy-
tailed streams with the true parameters [ , ]µ λ and statistically 
multiplex them to obtain the output stream Z.  The input streams 
consisted of 100,000 samples. We perform three set of experiments 
where the true values of [ , ]µ λ  are [0.035, 0.5]. [0.95, 1] and [2, 
0.75] respectively. In particular simulation was run for 200,000 
time units (This can be expressed in terms milliseconds, 
microseconds or seconds based on whether [ , ]µ λ is expressed on 
the basis of per milliseconds, microseconds or seconds). Once the 
samples of the output stream are generated we obtain the true 
moments that are depicted in columns 1 and 2 of Table 1 using the 
moment equations. Using the estimation algorithm we estimate the 
arrival rates of the input streams as shown in columns 3 and 4 of 
the table.  The surface of E(X) vs. E(X2) generated for the valid 
ranges of [ , ]µ λ , 0.5 1µ< <  and 0λ > is shown in Fig.5. Using 

these estimated values, ˆˆ[ , ]µ λ , synthetic multiplexed traffic are 
generated and the first and second moments are calculated and this 
is depicted as the estimated E(X) and E(X2) in the table. Results 
demonstrate that the estimated arrival rates are indeed close to the 
true values.  The standard deviation of the estimates averaged over 
100 runs was of the order 410− . 
 

5. CONCLUSION AND FUTURE WORK 
 

         A problem of determining the degree of mixing of two 
independent streams of traffic from observations of their 
statistically multiplexed stream was presented. The paper provides 
a general expression for the PDF of the inter-arrival time mixed 
stream in terms of the PDF of the input inter-arrival times. The 
paper provides an expression to compute the moments of the 
output stream. An approach was provided to estimate input 
parameters from the first and second order statistics of the output 
traffic for the specific case of multiplexing Poisson and heavy-
tailed processes. For arrival rate estimation of the input streams, 
we have proposed a look–up table approach based on nearest 
neighbor search. The results demonstrate that the estimated arrival 
rates are indeed close to the true values. Attempting solution to the 
problem through recursive means such as EM algorithm can be a 
motivating extension to compare against the current approach.  
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Fig. 5. Surface of E(X) vs. E(X2). 

 

E(X) E(X2) Estimated λ  Estimated µ Estimated E(X) Estimated E(X2) 

1.87 8 0.0352 0.5 1.8679 8.0181 
0.5128 0.3931 0.9456 1.0050 0.5130 0.3930 
0.3636 0.2389 2 0.75 0.3635 0.2391 

 Table 1. Estimated arrival rates from the moments 
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