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ABSTRACT 
We propose a multi-step procedure for constructing a confi-
dence interval for the number of signals present. The pro-
posed procedure uses the ratios of a sample eigenvalue and 
the sum of different sample eigenvalues sequentially to de-
termine the upper and lower limits for the confidence inter-
val. A preference zone in the parameter space of the popula-
tion eigenvalues is defined to separate the signals and the 
noise. We derive the probability of a correct estimation, 
P(CE), and the least favorable configuration (LFC) asymp-
totically under the preference zone. Some important proce-
dure properties are shown. Under the asymptotic LFC, the 
P(CE) attains its minimum over the preference zone in the 
parameter space of all eigenvalues. Therefore a minimum 
sample size can be determined in order to implement our 
procedure with a guaranteed probability requirement. 

1. INTRODUCTION 

In this paper, we propose a multi-step procedure for con-
structing a confidence interval for the number of signals. The 
procedure combines the results of two multi-step estima-
tions. The two estimations provide the upper limit and the 
lower limit respectively for the confidence interval. A 
framework adopted from the selection theory is used to set 
up the problem and then a selection-type procedure is pro-
posed to solve the problem. Schmidt [1], Wax and Kailath 
[2], Wax, Shan, and Kailath [3], and Zhao, Krishnaiah, and 
Bai [4] modeled the signal and noise in certain manner so 
that the number of signals present in radar measurements can 
be considered as the difference of the components in an ob-
served vector and the multiplicity of the common smallest 
eigenvalue of the covariance matrix. Chen [5] developed a 
single step procedure for estimating the multiplicity of the 
smallest eigenvalue and applied their procedure to a meas-
ured radar data. The procedure in [5] is a single-step proce-
dure and it provides an upper confidence limit for the num-
ber of signals with a guaranteed probability requirement. 
This paper considers a multi-step procedure to construct a 
confidence interval for the number of signals with a guaran-
teed confidence. 
 

Analogous to the approach by Chen [5], our proposed pro-
cedure is developed under the framework of statistical 
ranking and selection theory. The literature on ranking and 

selection theory is dominated by two methods; the indiffer-
ence zone and the subset selection formulations. Chen, 
Melvin, and Wicks [6] used a variation of the subset selec-
tion approach for developing a screening procedure. Their 
results showed dramatically improved performance over 
conventional techniques. Formulations and procedures for 
selection from a single multivariate normal population was 
thoroughly reviewed in Gupta and Panchapakesan [7], 
Chapters 7 and 14 and more recently in Gupta and Pancha-
pakesan [8], Section 2.  
 
The formulation that is the closest to this paper is the ap-
proach in Chen and Wicks [9], where a multi-step selec-
tion procedure was developed to estimate the lower confi-
dence limit of the number of signal present. This paper 
generalizes their result of a lower confidence limit to a 
confidence interval by using a combination of two multi-
step procedure. The first part consists of a step up proce-
dure for the lower confidence limit and the second part 
consists of a step down procedure for the upper confidence 
limit. 
 
In Section 2 below, we introduce our proposed procedure 
and derive the least favourable configuration of the proce-
dure. In addition, we state and prove properties of the pro-
posed procedure in Section 2. In Section 3, we give illustra-
tive examples. 

2. PROPROSED PROCEDURE 

In this section, we propose a step-up procedure for con-
structing an upper confidence limit for the number of sig-
nals present and a step-down procedure for constructing a 
lower limit for the number of signals present. The combin-
ing result of the two procedures gives a confidence inter-
val for the number of signals present. We also study the 
properties of the procedure. The procedure is based on the 
ratios of the eigenvalues of the sample covariance matrix 
from a multivariate normal data. First we give a descrip-
tion of the underlying model to our problem. 
 
As described in Schmidt [1], Wax and Kailath [2], Wax, 
Shan, and Kailath [3], and Zhao, Krishnaiah, and Bai [4], 
the measured data vector in radar signal processing, de-
noted by the p × 1 vector (t)x , can be written as 
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and q < p. The extreme case where q = p represents an 
unrealistic situation, as can be seen in equation (1) of [2]. 
Therefore it is not addressed in this paper. In the above 
model, n(t) is a p × 1 complex vector referred to as addi-
tive noise. It is distributed as complex multivariate normal 
with mean vector 0 and covariance matrix where 

 is unknown and  is p × p identity matrix and  
is a scalar complex waveform associated with the ith sig-
nal s(t) is distributed as complex multivariate normal with 
mean vector 0 and nonsingular covariance matrix ψ. Note 
that n(t) is independent of s(t).  is a p × 1 complex 
vector, described by an unknown vector parameter 

p
2Iσ

2σ pI si t( )

)A(Φ i

iΦ  
associated with the ith signal. We are interested in deter-
mining the number of signals q from a sample 

using statistical ranking and selec-
tion theory. 

)(t ..., ),(t ),(t n21 xxx

 
The covariance matrix  of Σ (t)x  is given by 

                          p
2I' + σAΣ = AΨ                  (2.2)  

where 'A  denotes the conjugate transpose of A. Let 
 denote the positive eigenvalues of the 

covariance matrix  and define the hypothesis, for q < p, 
p21   ...    λ≥≥λ≥λ

Σ
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iq
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where ’s are the q (< p) positive eigenvalues of iθ

. 'AAΨ  
 
Therefore  is equivalent to the hypothesis that q signals 
are transmitted. [2] used Akaike’s Information Criterion 
(AIC) and Schwartz Rissanen’s Minimum Description 
Length (MLD) criterion for model selection to determine 
the value q. [4] also used an information theoretic criterion 
to estimate q.  

qH

 
The following Definition 1 was considered by [2] and [4]. 
It is also required for our model.     
 Definition 1: 

          
  

q).-p ..., 2, 1,=(j        

   q); ..., 2, 1, = (i  +   :H 2
j+qi

2
 iq σ=λθσ=λ

That is, the multiplicity of the smallest eigenvalue is p – q, 
where p is known and q is unknown. Moreover, we as-
sume that . This is a reasonable assump-

tion because 

q21  ...   θ>>θ>θ

q21  ,... , , θθθ  came from the first term of the 
covariance matrix in equation (2.2). 
 
The least favorable configuration is the parameter configu-
ration where the probability of a correct separation is 
minimized. In order to find the minimum sample size to 
achieve certain probability requirement, we need to derive 
the least favorable configuration under a specific zone. To 
do that, we require the following definition.   
 
Definition 2: When q > 1,  

         SΩ = 1}/ *,  ) / |) ..., ,( { p1qpqp1 =λλδ≥λλλλ + ,  
a subspace in the parameter space containing all the pa-
rameters ) ..., ,( p1 λλ , is called the preference zone in 
ranking and selection theory. The case q = 0 corresponds 
to the case where there is no signal. The only configura-
tion for the parameter when q = 0 is the equal parameter 
configuration, i.e., 1. / p1 =λλ

 
It is in the preference zone, 

we seek for the least favorable configuration where the 
probability of a correct estimation is minimized. 
 
We define two disjoint and exhaustive subsets SΩ  and 

NΩ  of }0    ...  |) ..., ,{( = p1p1 >λ≥≥λλλΩ  by using ratio 

as the “distance measure”. The set  consists of the ei-
genvalues “sufficiently” away from the smallest eigen-
value 

SΩ

pλ , and the set NΩ  is the complement of SΩ . In 
other words, we define 

                     d( ) , ji λλ = ji /λλ ;           (2.4) 

SΩ = *}  ) ,d( | 1-p ..., 3, 2, 1,= i , { pii δ≥λλλ   

and SN  -  = ΩΩΩ , where *δ  > 1 is a pre-assigned real 
number used to differentiate among eigenvalues (signal 
and noise). Our goal is to construct a 100(1-P*)% confi-
dence interval for the unknown cardinality of SΩ , q, the 
number of signals. That is, we need to construct a pair of 
statistics such that P(q ∈ [ q , q ]) ≥ P*. The process of 

finding the lower and upper limits { q , q } is defined as 
follows. 
 
Part I: A step-up procedure R  for finding the lower limit 
q . 
 
In this part, we require a procedure R  to separate the set 
of eigenvalues into two disjoint subsets, sS  and nS . The 

separation is said to be correct ( CE ) if sS  ⊆ SΩ , mean-
ing that the true values of all the eigenvalues in the se-
lected subset are significantly larger than the true smallest 
eigenvalue. In other words, CE  occurs when the value of 
q is larger than or equal to the number of elements in . 
The procedure 

SS
R  should satisfy the predetermined prob-
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ability requirement that P( CE | R ) ≥ (1+P*)/2, where P*, 
satisfying 1/p < (1+P*)/2 < 1, is specified in advance.  
 
Procedure R : Compute the covariance matrices S. Let 

 denote the ordered eigenvalues of S. Let p21  > ... >  > lll

ic  = max ( , *δ ip ) where ip  denotes the 100(1+P*)/2 

percentile of the random variable 
 when the true number 

of signals is q = i -1 (i = 1, …, p - 1), and the p eigenval-
ues of the matrix  satisfy the slippage configuration 
condition:  

)]i - p/() + ... +  /[( 1+i1-ppi llll +

Σ

*
i1-ipi1-i21   / , = ... =   =...   δ=λλλλ>λ=λ=λ >1  (2.5) 

Let q  denote the 100(1+P*)/2 lower confidence limit of q. 

Claim that q  = 0  

if  < )]1p/() + ... +  /[( 21-pp1 −+ llll 1c . Otherwise, go to 
next step. 
Claim that q  = 1  

if >)]1-p/() + ... +  /[( 21-pp1 llll + 1c   

and < )]2-p/() + ... +  /[( 31-pp2 llll + 2c . Otherwise, go 
to next step. 

… 
Claim that q = i if  

)]1-p/() + ... +  /[( 21-pp1 llll + > 1c ,  …, 

)]i - p/() + ... +  /[( 1+i1-ppi llll + > ic , and  

]1)-i-p/() + ... +  /[( 2+i1-pp1i llll ++ < 1ic + . Otherwise, 
go to next step. 

… 
Claim that q  = p-1 if  

)]1-p/() + ... +  /[( 21-pp1 llll + > 1c , …,  

and  > p1-p / ll 1-pc . 

 
Part II: A step-down procedure R  for finding the upper 
limit q . 
In this part, we require a procedure R  to separate the set 
of eigenvalues into two disjoint subsets, sS  and nS . The 

separation is said to be correct ( CE ) if sS  ⊇ , mean-
ing that all the eigenvalues whose true values are signifi-
cantly larger than the smallest eigenvalue are included in 
the selected subset. In other words, 

SΩ

CE  occurs when the 
value of q is smaller than or equal to the number of ele-
ments in . The procedure SS R  should satisfy the prede-

termined probability requirement that P( CE | R ) ≥ 
(1+P*)/2, where P*, satisfying 1/p < (1+P*)/2 < 1, is 
specified in advance.  
Procedure R : Let ic  = min ( , *δ ip ) where ip  denotes 
the 100(1-P*)/2 percentile of the random variable 

)]ip/() + ... +  /[( 1+i1-ppi −+ llll  when the true number 
of signals is q = i  (i = 1, …, p - 1), and the p eigenvalues 
of the matrix Σ  satisfy the slippage configuration condi-
tion as defined in (2.5). Let q  denote the 100(1+P*)/2 
upper confidence limit of q. 
Claim that q = p-1  
if  > p1-p / ll 1-pc . Otherwise, go to next step. 
Claim that q = p-2 
if  < p1-p / ll 1pc −  and  >]2/) + /[( 1-pp2p lll − 2pc − . 
Otherwise, go to next step. 

… 
Claim that q  = i  
if <p1p / ll − 1pc − , …,  

and )]ip/() + ... +  /[( 1+i1-ppi −+ llll > ic . Otherwise, go 
to next step. 

… 
Claim that q  = 0  
if <p1p / ll − 1pc − , …,  

and  )]1p/() + ... +  /[( 21-pp1 −+ llll  < 1c . 
 
Theorem 2.1: Under the general configuration of eigen-
values of the matrix Σ  when q signals are present: 

w
e have 

,   / , = ... =  = 1  ...  *
1qqp2+q+qq21 δ≥λλλλλ>λ≥≥λ≥λ +

(a) P( CE | R ), the probability that the estimate obtained 
from Procedure R  is a lower limit for the number of signals 
is at least (1+P*)/2; 
(b) P( CE | R ), the probability that the estimate obtained 
from Procedure R  is an upper limit for the number of sig-
nals is at least (1+P*)/2; and 
(c) the interval [ q , q ] obtained from Procedure R  and R  

satisfies the probability requirement P(q ∈ [ q , q ]) ≥ P*. 

3. ILLUSTRATED EXAMPLES 

In this section, we give examples to illustrate the estimates 
of ci  and ci , our procedure parameters. The first example 
shows how to estimate the procedure parameters when p = 
10, δ *  = 4, n = 100. The second example shows the proce-
dure parameters when n is increased to n = 2000. Then we 
use the asymptotic result in Theorems 2.4 to compute the 
large sample procedure parameters and compare them to the 
ones obtained from the simulation. 
 
Example 1: We consider the case: p = 10, n = 100, *δ  = 4. 
We use simulation to find the 5th and 95th percentiles of the 
ratios of eigenvalues, )]ip/() + ... [( 1+ipi −+ lll  needed in 
our procedure. All the simulations in this paper use 10000 
repetitions.  
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The table below shows the 5th and 95th percentiles of 
)]ip/() + ... [( 1+ipi −+ lll , i = 1, …, p – 1 when the true 

number of signals is i where i ∈ {1, …, p-1}.  
 
Table 1: 5th and 95th percentiles of 

)]ip/() + ... [( 1+ipi −+ lll , n=100  
i        1       2        3       4      5       6      7       8        9 
5th   
percentile   3.26  2.95  2.74  2.60  2.43  2.32  2.21  2.08   1.88 
95th  
percentile   5.22  4.54  4.18  3.89  3.71  3.57  3.45  3.39   3.36 
      Therefore our procedure parameters are  ( 91 c ..., ,c ) = ( 
5.221, 4.541, 4.182, 4, 4, 4, 4, 4, 4) and ( 91 c ..., ,c ) = (3.26, 
2.95, 2.74, 2.60, 2.43, 2.32, 2.21, 2.08, 1.88). 
 
Example 2: We increase the sample size n to n=2000. The 
5th and 95th percentiles of the ratios of eigenvalues, 

)]ip/() + ... [( 1+ipi −+ lll , from simulation are presented 
in Table 2. 
 
Table 2: 5th and 95th percentiles of 

)]ip/() + ... [( 1+ipi −+ lll , n=2000  
i          1      2        3       4      5        6      7      8       9 
5th   
percentile    3.79  3.71  3.65  3.61  3.56  3.52  3.48  3.44  3.37 
95th  
percentile    4.23  4.08  4.01  3.94  3.89  3.85  3.82  3.80  3.81 
 
Therefore our procedure parameters are ( 91 c ..., ,c ) = 
(4.235, 4.087, 4.005, 4, 4, 4, 4, 4, 4) and ( 91 c ..., ,c ) = 
(3.792, 3.714, 3.653, 3.611, 3.562, 3.525, 3.483, 3.440, 
3.371). 
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