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ABSTRACT
It is well known that an over-driven loudspeaker would

produce a nonlinearity that limits the performance of an
acoustic echo canceler (AEC). In contrast, only a handful of
studies have been documented on the effect of speech coding
nonlinearity on the AEC. This paper investigates the com-
bined effect of both types of nonlinearities in the network-
based AEC framework as opposed to when the AEC is per-
formed at the source of echo such as a cellular handset.
The simulation results show that while a mild saturation-
type loudspeaker nonlinearity causes the echo return loss en-
hancement (ERLE) to go down significantly, it is the non-
linear speech coding distortion on the acoustic echo signal
that ultimately reduces the achievable ERLE. The results also
point to the fact that a low bit-rate speech codec is capable
of synthesizing a perceptually acceptable speech signal but
does it in a way that is untractable by traditional linear AEC
algorithms.

1. INTRODUCTION

In order to meet the customer satisfaction, cellular handset
manufactures today integrate many popular features, such
as multimedia playback or global navigation system capa-
bilities, into their products. As a consequence, they mostly
overlook a minor yet important and computationally inten-
sive task like the AEC in order to minimize the handset’s
power consumption and manufacturing cost. Furthermore,
echo problems in telecommunication are historically consid-
ered a network issue, and it is often not easily justified for
handset manufacturers to take upon themselves the issue for
no obvious benefit to the user of their equipment.

Therefore, the responsibility of AEC implementation is
often relegated to the network providers. The AEC must then
be performed at a central location somewhere in the network,
as illustrated in Figure 1. The encoding and the decoding at
the base station are not required in a tandem-free operation
(TFO) cellular network, but such network must perform the
AEC in coded domain and is not considered in this paper;
otherwise, they are required when transcoding takes place
in the network, which occurs most of the time, or when the
remote call is made through a landline.

There are two types of nonlinearities that potentially limit
the AEC performance in the network like the one in Figure
1. One is the nonlinear acoustic coupling between the loud-
speaker and the microphone of a handset. The other is the
nonlinear speech coding distortion applied to both the far-
end and the near-end signals. There are numerous papers
published already on the topic of nonlinear AEC, but few of
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Figure 1: Implementation of AEC in the network.

them, if any, address the two types of nonlinearities together
in a single network-based AEC framework.

For instance, a mean reduction of 12 dB in the ERLE due
to the saturation-type loudspeaker nonlinearity on an Alcatel
handset is reported in [1]. In such case, a cascading of the
polynomial Volterra filter with a linear adaptive filter [1],a
partial adaptive structure with the time-delay neural network
(TDNN) [2], or the adaptive orthogonalized power filter [3]
can be used to achieve roughly 5 dB increase in the ERLE,
but none of these nonlinear adaptive filtering methods take
into account the speech coding nonlinearity. On the other
hand, over 50 dB reduction in the ERLE is attributed to the
nonlinear speech coding distortion alone when the AEC is
performed in a simulated cellular network [4], yet no solu-
tion to the problem has been published to date due to the
difficulty in characterizing the speech coding nonlinearity.
In addition, the characteristics of coded speech have been
used to improve the network-based AEC performance with
the use of a post-filter based on the statistical information
from a speech encoder [5]. However, [5] does not consider
either the acoustic coupling nonlinearity or the speech cod-
ing nonlinearity, both of which can inhibit a linear adaptive
filter from reaching the optimum solution.

In this paper, we will examine the AEC in the network
through simulations to see how the two types of nonlinear-
ities together affect the linear AEC performance. We will
also quantify the degree of nonlinear distortion caused by
several speech codecs and by specific components within a
codec in order to further characterize the effect of speech
coding nonlinearity on linear AEC. The overall goal is to nu-
merically assess the effects of nonlinearities to gain a better
understanding of the problem so that much more effective
network-based AEC scheme, whether it be linear or nonlin-
ear itself, may be developed in the future.

The paper is organized as follows. First, we discuss in
Section 2 the possible sources of nonlinearities in acoustic
coupling and speech coding. Next, we present in Section 3
the simulation method for assessing the nonlinearities, fol-
lowed by the results and analyses in Section 4. Finally, we
end with the conclusions in Section 5.
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Figure 2: Three distinct acoustic echo paths.

2. SOURCES OF NONLINEARITIES

2.1 Acoustic Coupling

Figure 2 shows three distinct acoustic echo paths between the
loudspeaker and the microphone of a cellular handset: (a) a
reverberation in a room during the speaker-phone mode or a
reflection off of near-end speaker’s head during the handset
mode, (b) a direct coupling through the air, or (c) a mechani-
cal coupling through the handset itself. While (a) and (b) can
be modeled together with a single impulse response, (c) most
likely does not behave in a linear fashion and cannot be char-
acterized simply by an impulse response. The loudspeaker
with a saturation characteristic is also a major source of non-
linearity, which is usually modeled with a memoryless poly-
nomial function. Another possible source of nonlinearity is
the microphone that can suffer from both the over-driving
and the saturation problems.

Both the mechanical coupling and the loudspeaker sat-
uration will have a significant effect on the AEC when the
far-end signal is played back at a high volume on a handset
with an inexpensive loudspeaker or with a casing that is not
properly designed to reduce the mechanical coupling. How-
ever, it is difficult to simulate a mechanical coupling without
working with a set of differential equations, thus such analy-
sis is out of the scope of this paper. We will also ignore the
nonlinearity due to over-driving or saturation at the micro-
phone since the far-end signal played out at the loudspeaker
of a handset is most likely at a level much lower than the
near-end speaker’s voice.

2.2 Speech Coding

Most of the current speech codecs used in wireless communi-
cations are based on the linear prediction coding analysis-by-
synthesis (LPC-ABS) approach. Code-excited LPC (CELP)
is one type of LPC-ABS codec. The CELP encoding and
decoding processes are represented by the schematics in Fig-
ure 3. Basically, the CELP encoder searches iteratively for
the best encoding parameters (i.e. the codewordci(n), the
codeword gaingc, the pitch gaingp, and the pitch delayT)
by perceputally weighting the errore(n) between the original
speechs(n) and the decoded speech ˜s(n) and minimizing the
energy of the weighted errory(n). More detailed information
on LPC-ABS and CELP can be found in [6].

As illustrated in Figure 3, the CELP speech coding pro-
cess is altogether nonlinear and sub-optimal. One possible
source of nonlinearity is the adaptive post-filter, which im-
proves the perceptual quality of the synthesized speech ˆs(n)
but does not necessarily give a better match to the original
speech. By the same token, the perceptual weighting fil-
ter may also affect the AEC performance since it is an in-
tegral part of the encoding parameter search process. An-
other source of nonlinearity is the quantization of encoding
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at a handset

Acoustic
Response

+
Decoder

AEC

DecoderEncoder Decoder

Loudspeaker
Saturation

Encoder

in the network

_
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parameters, for which the quantization noise is not additive
anymore and cannot be treated as the output of some random
process. Other nonlinearity factors include how the chan-
nel coding bits are distributed among the quantized encoding
parameters and how the individual components within the
encoder, such as the fixed and the adaptive codebooks, are
implemented in different LPC-ABS codecs.

3. SIMULATION METHOD

Figure 4 shows the network-based linear AEC configuration
that is implemented during simulations. We assume here that
x(n) (the far-end signal) is also encoded, which would be
the case for a cellular-to-cellular call, and that the decoder
in a handset and the decoder in the network are identical.
For simplification purposes, we also assume that the wire-
less channel (i.e. the path between encoder and decoder)
is ideal and does not impose any communication delay or
packet loss, that there is no delay due to codec processing
time, and that there is no double-talk situation.

The goal is to measure the ERLE through simulations for
various signal types and conditions, listed below:
• Male speech, female speech, or white noise.
• Voiced or unvoiced speech.
• With or without speech coding.
• With or without loudspeaker saturation.
• With or without post-filtering.

Only the post-filtering in the decoder in the network that op-
erates on encodedy(n) (the acoustic echo signal) is remov-
able since the decoder in the network that operates on en-
codedx(n) simulates the decoding in a handset, which is out
of the network’s control.

The ERLE is defined as

ERLE= 10log10
∑N

n=1 ŷ2(n)

∑N
n=1e2(n)

(dB), (1)
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Codec Bit-Rate Codec Frame Size
Name (kbps) Type (ms)

G.723.1 5.3 ACELP 306.3 MP-MLQ
G.728 16 LD-CELP 2.5
G.729 8 CS-ACELP 10

GSM AMR 4.75, 5.15, 5.9, 6.7 ACELP 207.4, 7.95, 10.2, 12.2

Table 1: LPC-ABS speech codecs and their features.
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Figure 5: Loudspeaker saturation functionρ(x) for α = 0.1,
0.2, . . ., 0.7 (left) and the acoustic impulse response (right)
used during simulations.

whereŷ(n) is the acoustic echo signal with or without speech
coding distortion,e(n) is the residual echo signal, andN is
the sample size. For calculating the average ERLE, only the
last one-half of the data are used in order to ensure sufficient
convergence.

16-bit waveforms sampled at 8 kHz are used as the far-
end signal. Male and female speeches are obtained from
the TIMIT database [7], which comes with phoneme labels
that can be used for voiced/unvoiced speech classification.A
white noise is generated from the Gaussian distribution with
zero mean and unit variance. Each signal is analyzed for 30
seconds and is scaled to 99% of the maximum volume range
in order to observe the loudspeaker saturation effect.

The speech codecs tested during simulations are ITU
G.723.1 [8], ITU G.728 [9], ITU G.729 [10], and GSM
AMR [11]. They are all based on LPC-ABS and are widely
used in satellite, wireless, or voice-over-IP (VoIP) communi-
cations. The corresponding bit-rates, codec types, and frame
sizes are listed in Table 1.

The acoustic coupling is modeled by a loudspeaker sat-
uration followed by a linear acoustic impulse response. The
loudspeaker saturation is implemented with a soft-decision
function

ρ(x) =
1−exp(−x/α)

1+exp(−x/α)
, −1≤ x≤ 1, (2)

where the parameterα determines the degree of saturation.
The linear acoustic response is determined from an actual
acoustic echo recorded from a cellular handset. The impulse
response is truncated to 200 samples long so that the maxi-
mum peak occurs at the 20th sample, and it is scaled such that
it produces roughly 10 dB echo return loss (ERL). The plot
of ρ(x) for several values ofα and the plot of the impulse
response used during simulations are shown in Figure 5.

The linear AEC is implemented by using the normalized
least mean square (NLMS), the fast (or frequency) block
LMS (FBLMS), and the resursive least square (RLS) algo-

rithms [12]. The adaptation step sizes are set to 0.5 and 0.017
for NLMS and FBLMS, respectively, and the forgetting fac-
tor of 1 is used with RLS. The block size of 200 samples
(same as the impulse response length) is used with FBLMS.

4. SIMULATION RESULTS

The ERLE plots in Figure 6 were obtained from implement-
ing NLMS, FBLMS, and RLS on a female speech in the
newtork-based AEC setting with only loudspeaker saturation
(α = 0.4) and no speech coding. They show that NLMS can
provide better result at low volume level than the other algo-
rithms, which illustrates the robustness of NLMS against the
saturation-type loudspeaker nonlinearity. On the other hand,
the ERLE plots in Figure 7 were obtained when there is only
speech coding (GSM AMR 12.2 kbps) and no loudspeaker
saturation, and they show that the ERLE is consistently well
below 20 dB for all three AEC algorithms tested. It means
that nonlinear adaptive filters based on LMS-type structure,
such as the Volterra filter and the power filter, would also be
insufficient to handle the speech coding nonlinearity.

The combined effect of the loudspeaker and speech cod-
ing nonlinearities on the network-based AEC (FBLMS) can
be seen in Figure 8, in which the average ERLE obtained
from a female speech is plotted as a function of the parameter
α and the GSM AMR bit-rate. The plot shows that unlessα
is very small (i.e. when there is a severe loudspeaker satura-
tion), most of the AEC performance degradation encountered
in a real-life situation can likely be attributed to the nonlinear
speech coding distortion.

Table 2 provides the average ERLE obtained from male
speech, female speech, and white noise (WN) signals when
the AEC (FBLMS) was performed in a handset (i.e. when
the encoder-decoder pair in the echo path was removed) with
post-filtering (PF) and with or without loudspeaker satura-
tion (LSS) (α = 0.4 for LSS). The table shows that a speech
coding on the far-end signal does not practically affect the
handset-based AEC performance, where the minimum av-
erage ERLE for the male speech with no loudspeaker sat-
uration is 40.5 dB, which is only 11.5 dB down from the
baseline of 52.0 dB. In fact, there is a slight increase in the
average ERLE for most of the loudspeaker saturation cases,
more so for a white noise than for the other signal types. This
is likely due to the increased energy of the far-end signal in
mid-volume range after going through the soft-decision func-
tion, as the distribution of a white noise is more heavily tailed
than that of a speech signal.

Tables 3, 4, and 5 provide the average ERLE obtained
from male speech, female speech, and white noise (WN) sig-
nals, respectively, when the AEC (FBLMS) was performed
in the network with different combinations of PF and LSS (α
= 0.4). The three tables show that the highest average ERLE
when there is a speech coding with post-filtering is around
16 dB, with or without the loudspeaker nonlinearity.

Tables 3, 4, and 5 also show that although the post-
filtering effect seems small in general, there is still an overall
decrease in the average ERLE for male and female speeches
when there is post-filtering, where the reduction can be as
much as 3 dB for some cases (e.g. female speech coded with
G.728 with no loudspeaker saturation). This suggests the
need to take a closer look at the perceptual weighting filter
as well to see how it affects the AEC performance.

In addition, Tables 3, 4, and 5 show that the average
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Figure 6: ERLE from the network-based AEC for a female
speech when there is only loudspeaker saturation (α = 0.4)
and no speech coding.
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Figure 7: ERLE from the network-based AEC for a female
speech when there is only speech coding (GSM AMR 12.2
kbps) and no loudspeaker saturation.

ERLE is reduced the most for a white noise than for the
other types of signal in the network-based AEC, whereas the
slightly higher average ERLE for a female speech than for
a male speech is consistent with the general results obtained
when a stochastic gradient-type algorithm is used. This is
probably because the codebooks used by low bit-rate codecs
are adequate enough to model the excitation signals that drive
the voiced speech production but tend to be too sparse to de-
scribe many possible random noises.

Furthermore, Table 6 provides the average ERLE calcu-
lated separately for voiced and unvoiced portions of male
and female speeches (62% and 60% of the male and fe-
male speeches, respectively, were voiced), and it can be ob-
served from the table that the average ERLE for an unvoiced
speech is just as low as what is obtained from a white noise.
The problem can potentially be made worse by the artifi-
cial silence insertion algorithm used by some speech codecs
(e.g. GSM AMR’s discontinuous transmission (DTX) op-
tion, which was not implemented during simulations), and
it may necessitate the background/foreground filtering in or-
der to avoid the adaptive filter divergence during unvoiced or
silent portions of a speech.

Finally, Tables 3 through 6 collectively show that there
is a strong correlation between the ERLE and the bit-rate.
Also, there are several sizeable jumps in the average ERLE
for GSM AMR at serveral bit-rates (e.g. from 6.7 to 7.4 kbps
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Figure 8: Average ERLE from the network-based AEC
(FBLMS) for a female speech as a function of the loud-
speaker saturation parameterα and the GSM AMR bit-rate.

Codec Bit-Rate LSS No LSS
Name (kbps) Male Female WN Male Female WN

G.723.1 5.3 16.73 18.80 27.36 53.51 65.40 72.56
6.3 17.14 19.02 27.19 60.83 66.28 73.58

G.728 16 17.91 20.03 27.08 59.68 66.09 76.93
G.729 8 18.61 19.91 33.07 53.81 59.81 71.63

GSM AMR

4.75 17.60 18.59 33.47 48.65 59.46 61.64
5.15 18.16 19.34 33.72 55.11 50.27 61.06
5.9 18.79 20.27 32.74 64.01 62.25 67.36
6.7 18.85 20.09 33.28 57.31 63.98 64.01
7.4 18.69 20.21 30.83 48.53 64.43 71.06
7.95 18.79 20.34 28.06 51.91 63.48 64.20
10.2 18.68 20.20 30.45 49.53 63.63 65.34
12.2 18.71 20.14 29.60 40.50 64.39 51.06

No Speech Coding 17.89 19.97 26.60 51.99 61.08 77.04

Table 2: Average ERLE (dB) from the handset-based AEC
(FBLMS) with PF (α = 0.4 for LSS).

and from 7.95 to 10.2 kbps). These results stress the need
to investigate how the the encoding parameter quantization
and the channel coding bit allocation are implemented in a
specific speech codec so that the information may be used to
improve the AEC algorithm.

5. CONCLUSIONS

The results from the network-based AEC simulations show
that unless there is a severe loudspeaker saturation, it is
mostly the speech coding nonlinearity applied to the acous-
tic echo signal and not the loudspeaker nonlinearity that lim-
its the linear AEC performance. While NLMS exhibits ro-
bustness against the saturation-type nonlinearity at low vol-
ume level, none of the linear AEC algorithms tested (NLMS,
FBLMS, RLS) were able to adequately handle the speech
coding nonlinearity. The ERLE is strongly correlated with
the speech codec bit-rate, where the highest average ERLE
obtained by using popular speech codecs such as GSM AMR
and G.728 was around 16 dB regardless of the degree of loud-
speaker saturation. Also, the sparsity of codebook in speech
codecs based on LPC-ABS is likely a major factor in the re-
duction of the ERLE for unvoiced and silent portions of a
speech signal. The post-filter removal makes a measurable
difference for some speech codecs, and there are still many
parts within a speech codec, such as the perceptual weight-
ing filter, the encoding parameter quantization, and the chan-
nel coding bit allocation, that must be analyzed carefully be-
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Codec Bit-Rate LSS No LSS
Name (kbps) PF No PF PF No PF

G.723.1 5.3 8.64 8.81 9.38 9.66
6.3 10.05 10.34 10.66 11.02

G.728 16 13.83 15.05 15.79 18.00
G.729 8 10.41 11.35 11.02 12.09

GSM AMR

4.75 7.29 7.61 7.55 7.81
5.15 7.16 7.43 7.80 8.05
5.9 8.44 8.77 8.78 9.04
6.7 9.19 9.46 9.63 9.98
7.4 10.15 10.77 11.12 11.74
7.95 10.07 10.54 10.74 11.35
10.2 13.38 13.69 14.74 14.98
12.2 14.18 14.58 15.86 16.25

No Speech Coding 17.89 51.99

Table 3: Average ERLE (dB) from the network-based AEC
(FBLMS) for a male speech (α = 0.4 for LSS).

Codec Bit-Rate LSS No LSS
Name (kbps) PF No PF PF No PF

G.723.1 5.3 8.83 9.24 9.54 9.93
6.3 10.21 10.41 10.59 11.06

G.728 16 14.61 16.38 15.99 19.01
G.729 8 10.67 11.56 11.17 12.23

GSM AMR

4.75 7.42 7.57 7.57 7.77
5.15 7.79 8.01 8.15 8.36
5.9 8.50 8.80 8.77 9.15
6.7 9.38 9.82 9.79 10.28
7.4 10.60 11.19 11.08 11.77
7.95 10.44 10.90 10.94 11.54
10.2 13.72 13.99 14.60 14.92
12.2 14.59 14.90 16.26 16.67

No Speech Coding 19.97 61.08

Table 4: Average ERLE (dB) from the network-based AEC
(FBLMS) for a female speech (α = 0.4 for LSS).

fore any new AEC algorithms that work in conjunction with
speech coding can be formulated.
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