
LATTICE FACTORIZATION AND DESIGN OF PERFECT RECONSTRUCTION
FILTER BANKS WITH ANY LENGTH YIELDING LINEAR PHASE

Zhiming Xu and Anamitra Makur

School of Electrical and Electronic Engineering
Nanyang Technological University, Singapore 639798

email: zhmXU@pmail.ntu.edu.sg, eamakur@ntu.edu.sg

ABSTRACT

This paper introduces the lattice factorizations and designs of a large
class of critically sampled linear phase perfect reconstruction filter
banks. We deal with FIR filter banks with real-valued coefficients
in which all filters have the same arbitrary length and symmetry
center. Refined existence conditions on the length are given first.
Lattice structures are developed for both even and odd channel fil-
ter banks. Compared to most existing design methods, the proposed
approach can offer better trade off between performance and filter
length. Finally, several design and application examples are pre-
sented to validate our approach.

1. INTRODUCTION

There has been enormous research works in the area of filter banks
(FB) [1, 2] which find many applications in image/audio/video pro-
cessing and communication systems. Of extreme importance is the
capability to design a filter bank for some desired applications. In
image and video processing, linear phase (LP) property of filters
is always crucial. Moreover, simple symmetric extension methods
can be employed for LP filters to accurately handle the boundaries
of finite length signals, such as images. For practical purposes, only
FIR, causal, LP and perfect reconstruction (PR) filter banks with
real-valued coefficients are considered in this paper.

Consider the polyphase form of an M-channel critically sam-
pled linear phase perfect reconstruction filter bank (LPPRFB)
shown in Fig. 1. Suppose all the filters have the same arbitrary
length L = KM + β (0 ≤ β < M) and the same symmetry center.
Previous research works on such FBs have been focused on the nec-
essary conditions and factorizations of the polyphase matrix. The
restrictions on the filter symmetry polarities and length were studied
thoroughly in [3]. However, most design methods [4, 5, 6] concen-
trated only on the constrained case β = 0, i.e., filter length with
multiple of M. As far as the case β > 0 is concerned, the cosine-
modulated FBs with arbitrary length were studied in [7]. Another
design method without constrained cosine-modulated structure was
discussed in the restrictive even channel paraunitary FBs [3]. In
[8], the FBs with arbitrary filter length were also studied based on
minimization of mean square error. However, their design methods
cannot structurally enforce LP and PR properties into FBs. Thus
the designed FBs based on their methods have neither LP nor PR
property in general and are source dependent.

Figure 1: Polyphase form of an M-channel LPPRFB

In this paper, we study the more general class of LPPRFBs with
arbitrary but equal filter length. First, the refined existence condi-
tions for such class of FBs are given. Lattice factorizations and de-
signs for both even and odd channel cases are developed. Different
from [8], our method can structurally enforce LP and PR properties
into FBs and is source independent. Finally, several design exam-
ples are presented to validate the proposed lattice structures.

The main motivation for this work is to design more flexible
FBs which may give more possible choices for a given desired ap-
plication. In most traditional works [4, 5, 6], the filter length must
be multiple of M, which greatly limits the possible design of LP-
PRFBs. For example, for 8-channel LPPRFBs, if the length is con-
strained to be less than 24 by the constraints of complexity, there are
only two possible choices in conventional designs. The restriction
becomes more severe for large M. However, this restriction is from
the traditional FB design methods, not from LPPRFBs, which can
be seen from existence conditions in section 2. Our proposed de-
sign method can provide more possible LPPRFBs satisfying given
constraint length and the length increment among FBs can be made
as small as possible. Continuing the above example, the proposed
design method can give 8 possible LPPRFBs compared to only 2
choices in traditional method. Our design method can offer bet-
ter trade off between filter length and performance than traditional
methods. To our knowledge, this is the most general LPPRFB with
the same length to date.

Notations: Bold-faced quantities denote matrices and vectors.
IM , JM and 0M denote the identity matrix, reversal matrix and null
matrix, all with size M ×M. For FIR FBs, the polyphase matrix
can be written as E(z) = ∑K−1

i=0 e[i]z−i, where e[K−1] 6= 0. K −1
is defined as the order of the polyphase matrix, i.e., the FIR FB. It
is related to the maximum possible filter length L of the analysis
filters by L = KM. In addition, W2m and W2m+1 are 2m×2m and
(2m+1)×(2m+1) butterfly-like matrices, respectively, as follows.

W2m =

[

Im Im
Im −Im

]

, W2m+1 =





Im 0 Im
0

√
2 0

Im 0 −Im





2. EXISTENCE CONDITIONS AND GENERAL LATTICE
STRUCTURES

In [3], some necessary conditions for LPPRFBs with length L =
KiM + β were derived. For the class of LPPRFBs with equal filter
length, i.e., Ki = K, some further refined existence conditions can
be obtained and listed in Table 1. Note that even channel LPPRFBs
with the same length can only have even length. Thus, the case with
even M and odd β does not exist.

Without loss of generality, we can always arrange the M chan-
nel linear phase filters in such an order that the first ns filters are
symmetric, while the other na are antisymmetric filters. The associ-
ated analysis polyphase matrix E(z) should satisfy the LP condition
[3],

E(z) = z−(K−1)DME(z−1)ĴM(z) (1)

where

ĴM(z) =

[

z−1Jβ 0β×(M−β )
0(M−β )×β JM−β

]



Table 1: Existence conditions for M-channel critically sampled LP-
PRFB with length L = KM +β

Symmetry Polarity Condition Order K

M even, β even M
2 S and M

2 A Arbitrary

M odd, β even M+1
2 S and M−1

2 A odd

M odd, β odd M+1
2 S and M−1

2 A even

and DM = diag(Ins ,−Ina).
Similar to [3, 4, 5, 6], a lattice factorization for the analysis

polyphase matrix E(z) of LPPRFB can be formulated in the fol-
lowing form,

E(z) = GK−1(z)GK−2(z) · · ·G1(z)E0(z) (2)

where the starting block E0(z) with order N0 and length N0M + β
(with order N0 − 1 and length N0M if β = 0) has both LP and PR
properties, and each block Gi(z) with order N1 can propagate both
LP and PR properties and increase filter length by N1M . Such a
cascade form would finally generate a LPPRFB with filter length
L = (KN1 − N1 + N0)M + β . The simplified LPPR propagating
blocks in [6] can be used here for Gi(z). For even channel case,
i.e., M = 2m, Gi(z) has the following form,

Gi(z) =
1
2
ΦiW2mΛ(z)W2m (3)

=
1
2

[

Ui 0
0 Im

]

W2m

[

Im 0

0 z−1Im

]

W2m

However, for odd channel case, i.e., M = 2m + 1, Gi(z) has the
following form,

Gi(z) =
1
4
Φi,0W2m+1Λ

o
0(z)W2m+1Φi,1W2m+1Λ

o
1(z)W2m+1 (4)

=
1
4

[

Ui,0 0
0 Im

]

W2m+1

[

Im+1 0

0 z−1Im

]

W2m+1

×
[

Im 0
0 Vi,1

]

W2m+1

[

Im 0

0 z−1Im+1

]

W2m+1

The difference between our factorization and previous ones is
the starting block E0(z). Contrary to [4, 5, 6], E0(z) cannot be
made order zero if β 6= 0, i.e., constant matrix, which is treated as a
trivial case because it would impose multiple of (M−β ) zero filter
coefficients at fixed positions. Thus, E0(z) has at least order one for
the case of β 6= 0, i.e., N0 ≥ 1.

3. EVEN CHANNEL LPPRFB

Consider an M-channel LPPRFB (M = 2m) with filter length L =
KM + β (0 ≤ β < M). From the existence conditions in section 2,
we know that β must be even, i.e., β = 2l,(0≤ l < m). For the even
channel case, the LPPR propagating block Gi(z) has order one, i.e.,
N1 = 1. Thus, the minimal order of initial block E0(z) can be one if
β 6= 0, i.e., N0 = 1, thus length M+β . By the linear phase condition
(1), E0(z) can be written in the following form,

Ee
0(z) =

1√
2

[

S00 + z−1S00J2l S01 S01Jm−l
A00 − z−1A00J2l A01 −A01Jm−l

]

(5)

where matrices S00 and A00 have the same size m× 2l, S01 and
A01 have the same size m× (m− l). The corresponding synthesis
LPPRFB has a starting block,

Re
0(z) =

1√
2

[

T00 + zJ2lT00 W00 − zJ2lW00
T01 W01

Jm−lT01 −Jm−lW01

]

(6)

where matrices T00 and W00 have the same size 2l ×m, T01 and
W01 have the same size (m− l)×m. Then, with the PR condi-
tion Re

0(z)E
e
0(z) = IM , the following matrix equations can be es-

tablished.

T00S00 +JlT00S00Jl = I2l = W00A00 +JlW00A00Jl (7)
T01S01 = Im−l = W01A01 (8)

T00S01 = 02l×(m−l) = W00A01 (9)

T01S00 = 0(m−l)×2l = W01A00 (10)

With these equations, a rank condition on the matrices S00 and S01
can be found, which is a key to the lattice factorization.

Theorem 1. For the class of LPPRFBs and its starting block Ee
0(z)

stated above, the matrix S01 has full column rank and S00 has rank
l, i.e., rank(S01) = m− l and rank(S00) = l.

Proof. From (8), we know that m− l = rank(T01S01)≤ rank(S01).
In addition, rank(S01) ≤ min{m,m − l} = m− l. Thus, the ma-
trix S01 has full rank, i.e., rank(S01) = m− l. The matrix T01
also has full rank by similar derivation. From (7) and the rank in-
equality for matrix in [9], we can obtain that 2l = rank(T00S00 +
JlT00S00Jl) ≤ 2rank(T00S00), i.e., rank(T00S00) ≥ l. Define
matrix T = [TT

00,T
T
01]

T and S = [S00,S01], then from Eq. (8)-(10),
we know,

TS =

[

T00S00 0
0 Im−l

]

which means rank(TS) = rank(T00S00) + m − l ≤ rank(T) ≤
min{m + l,m} = m, i.e., rank(T00S00) ≤ l. Then, we get
rank(T00S00) = l. Finally, from (10) and Sylvester rank in-
equality in [9], 0 = rank(T01S00) ≥ rank(T01) + rank(S00) −
m ≥ rank(S00)− l, i.e., rank(S00) ≤ l. However, we know that
rank(T00S00) = l ≤ rank(S00). Therefore, rank(S00) = l. This
finishes the proof.

From the above analysis on the rank of matrix S00, we propose
a parameterized form for matrix S00 to help factorization,

S00 = [U00Γp U00Γm] (11)

where U00 has size m× l and Γp = (Γ1 +Γ2)/2 and Γm = (Γ1 −
Γ2)Jl/2, where Γ1 and Γ2 are two arbitrary square invertible ma-
trices with size l × l. Apply similar parameterized form for A00
with matrix V00 with the same size as U00 and replace the matri-
ces S01 and A01 with U01 and V01. By such parameterization, it
can be shown that Ee

0(z) in (5) can be written in (12) and factorized
in the form (13) shown on the top of next page, where Φe

0 can be
further factorized in the form (14) and matrices U0 = [U00,U01],
V0 = [V00,V01]. We also explicitly show the inverse Γ−1

e in (15),

Φ0 =

[

U0 0
0 V0

][

Im Im
Im Im

][

Im 0
0 Jm

]

(14)

Γ−1
e =





Γ̂p Γ̂m 0
0 0 I2(m−l)

JlΓ̂mJl JlΓ̂pJl 0



 (15)

where Γ̂p = (Γ−1
1 +Γ−1

2 )/2 and Γ̂m = (Γ−1
1 −Γ−1

2 )Jl/2. It can
be shown easily that such factorization can ensure PR property of
FB as long as U0 and V0 are square invertible matrices. Note that
a similar factorization proposed in [3] is only applicable to PU sys-
tem, where U0, V0, Γ1 and Γ2 are constrained to be square orthog-
onal matrices. On the contrary, the proposed factorization extends
it to the more general class of PR systems.

The proposed factorization is not only more general than be-
fore, but also good in terms of implementation delays. The follow-
ing theorem states that the proposed lattice structure employs the
fewest number of delays in its implementation.



Ee
0(z) =

1√
2

[

U00Γp + z−1U00ΓmJl U00Γm + z−1U00ΓpJl U01 U01Jm−l
V00Γp − z−1V00ΓmJl V00Γm − z−1V00ΓpJl V01 −V01Jm−l

]

(12)

=
1√
2

[

U00 U01 U01Jm−l z−1U00Jl
V00 V01 −V01Jm−l −z−1V00Jl

]

[

Γp Γm 0
0 0 I2m−2l

JlΓmJl JlΓpJl 0

]

=
1√
2

[

U00 U01 U01Jm−l U00Jl
V00 V01 −V01Jm−l −V00Jl

][

I2m−l 0

0 z−1Il

]

[

Γp Γm 0
0 0 I2m−2l

JlΓmJl JlΓpJl 0

]

=
1√
2
Φe

0 Λe(z) Γe (13)

Theorem 2. The factorization in (2) is minimal, where its factors
are given in (3) and (13).

Proof. The degree of a causal rational system is defined as the mini-
mum number of delays required for its implementation [1]. A struc-
ture is said to be minimal if the number of delays used is equal to
the degree of the transfer function. For the class of FBs described
above, it can be proven that [10],

deg(E(z)) = deg(|E(z)|)

By the LP condition in (1), we have

deg(|E(z)|) = deg
(

z−M(K−1)|D|× |E(z−1)|× |ĴM(z)|
)

(16)

For even channel case, the number of symmetric filters ns is equal
to the number of anti-symmetric filters na, thus |D| = 1. From [3],
we know that |ĴM(z)| = (−1)β+M/2z−β . Then, from (16) and the
equality deg(E(z−1)) = −deg(|E(z)|) = −deg(E(z)), we obtain,

deg(E(z)) = M(K−1)+β −deg(E(z))

which means deg(E(z)) = M(K − 1)/2 + β/2. In our factoriza-
tion, there are (K − 1) order one building blocks according to (3),
in which each block uses M/2 delays seen in (3). The initial block
Ee

0(z) employs β/2 = l delays seen in (13). Therefore, the total
number of delays in use is M(K − 1)/2 + β/2, which is just the
degree of the transfer function E(z). This finishes the proof.

4. ODD CHANNEL LPPRFB

From the existence conditions in Table 1, there are two possible
cases for odd channel LPPRFBs with M = 2m+1. One case is even
β with odd K, the other is odd β with even K. Because the LPPR
propagating block we employed for odd channel LPPRFB has order
two, the minimal order of initial block E0(z) for even β case (β 6= 0)
can be order one and length M + β , whereas it should be order two
and length 2M +β for odd β case (β 6= 0).

4.1 β is even
We show the even β case in detail here. For the even β = 2l,(0 ≤
l ≤ m), from the linear phase condition (1), the starting block E0(z)
can be written in the following form,

Eo
0(z) =

1√
2

[

S00 + z−1S00J2l S01 q S01Jm−l
A00 − z−1A00J2l A01 0 −A01Jm−l

]

where matrices S00, A00, S01 and A01 have size (m+1)×2l,m×
2l,(m+1)× (m− l) and m× (m− l), respectively. q and 0 are col-
umn vectors with size m+1 and m, respectively. The corresponding
synthesis LPPRFB has a starting block,

Ro
0(z) =

1√
2







T00 + zJ2lT00 W00 − zJ2lW00
T01 W01
rT 0T

Jm−lT01 −Jm−lW01







where matrices T00, W00, T01 and W01 have size 2l × (m +
1),2l×m,(m− l)× (m+1) and (m− l)×m, respectively. The row
vectors rT and 0T have size m + 1 and m, respectively. Similar to
even channel case, a set of matrix equations can be established for
the PR condition. Below is half of them.

T00S00 +J2lT00S00J2l = I2l (17)
T01S01 = Im−l (18)

T00S01 = 0,T01S00 = 0 (19)

T00q = 0,T01q = 0,rT S00 = 0,rT S01 = 0 (20)

rT q = 2 (21)

From these equations, a rank condition on the matrices S00 and S01
can also be found.

Theorem 3. For the class of LPPRFBs and its starting block Eo
0(z)

stated above, rank(S01) = m− l, rank(S00) = l and q is a nonzero
vector satisfying (20) and (21).

Proof. From (18), we know that m − l = rank(T01S01) ≤
rank(S01). In addition, rank(S01) ≤ min{m + 1,m − l} = m −
l. Thus, the matrix S01 has full rank, i.e., rank(S01) = m −
l. The matrix T01 also has full rank by similar derivation.
From (17) and the rank inequality for matrix in [9], we can ob-
tain that 2l = rank(T00S00 +JlT00S00Jl) ≤ 2rank(T00S00), i.e.,
rank(T00S00) ≥ l. Define matrices Ta = [TT

00,T
T
01,r

T ]T and
Sa = [S00,S01,q], then from Eq. (18)-(21), we can see,

TaSa =

[

T00S00 0 0
0 Im−l 0
0 0 2

]

which means rank(TS) = rank(T00S00)+ m− l + 1 ≤ rank(S) ≤
min{m + l,m + l + 1} = m + 1, i.e., rank(T00S00) ≤ l. Combined
with above inequality, we get rank(T00S00) = l. Similarly, de-
fine matrices Tb = [TT

01,r
T ]T and Sb = [S01,q], then it can be

shown easily that TbSb = diag(Im−l ,2), i.e., rank(Tb) = m− l +1.
However, from TbS00 = 0 and Sylvester rank inequality in [9], we
can obtain that 0 = rank(TbS00) ≥ rank(Tb)+ rank(S00)− (m +
1) from which the inequality rank(S00 ≤ (m + 1)− rank(Tb) =
(m + 1) − (m + 1 − l) = l can be established. Finally, from
rank(T00S00) = l ≤ rank(S00), we know that rank(S00) = l. This
finishes the proof.

From the rank of matrix S00, we also propose a parameterized
form similar to the even channel case for S00 = [U00Γp,U00Γm],
where U00 has size (m+1)× l, and Γp, Γm are defined as the same
way in even M case. Apply similar parameterized form for A00
with matrices V00 with the size m× l. Finally, replace the matrices
S01 and A01 with U01 and V01. It can be shown that Eo

0(z) can
be written in the form (22) and factorized in the form (23) shown
on the top of next page, where Φo

0 can be further factorized in the
form (24) and matrices U0 = [U00,U01,q] and V0 = [V00,V01].
We also explicitly show the inverse Γ−1

o in (25),

Φ0 =

[

U0 0
0 V0

]





Im 0 Im
0

√
2 0

Im 0 Im





[

Im 0 0
0 1 0
0 0 Jm

]

(24)



Eo
0(z) =

1√
2

[

U00Γp + z−1U00ΓmJl U00Γm + z−1U00ΓpJl U01 q U01Jm−l
V00Γp − z−1V00ΓmJl V00Γm − z−1V00ΓpJl V01 0 −V01Jm−l

]

(22)

=
1√
2

[

U00 U01 q U01Jm−l z−1U00Jl
V00 V01 0 −V01Jm−l −z−1V00Jl

]

[

Γp Γm 0
0 0 I2m−2l+1

JlΓmJl JlΓpJl 0

]

=
1√
2

[

U00 U01 q U01Jm−l U00Jl
V00 V01 0−V01Jm−l V00Jl

][

I2m−l+1 0

0 z−1Il

]

[

Γp Γm 0
0 0 I2m−2l+1

JlΓmJl JlΓpJl 0

]

=
1√
2
Φo

0 Λo(z) Γo (23)

Γ−1
o =





Γ̂p Γ̂m 0
0 0 I2(m−l)+1

JlΓ̂mJl JlΓ̂pJl 0



 (25)

where Γ̂p and Γ̂m are the same ones as in the even channel case.
It can be shown easily that PR property is ensured as long as U0
and V0 are invertible. Note that this is a new result, not reported in
the literature before. This new lattice factorization is also good in
terms of implementation delays. The following theorem states that
the proposed lattice structure employs the fewest number of delays
in its implementation.

Theorem 4. The factorization in (2) is minimal, where its factors
are given in (4) and (23).

Proof. This result is similar to the proof of Theorem 2. For the case
of odd M and even β , |ĴM(z)| = (−1)(M−1)/2z−β . Thus,

deg(E(z)) = deg
(

z−M(K−1)|D|× |E(z−1)|× |ĴM(z)|
)

= M(K−1)+β −deg(E(z))

which leads to deg(E(z)) = M(K − 1)/2 + β/2, same as the even
channel case. In this case, from the existence conditions in Table
1, we know that K should be odd. In our factorization, there are
(K − 1)/2 order-2 building blocks where each employs M delays
seen in (4) (Λo

0(z) has M/2 and Λo
1(z) has (M + 1)/2 delays). The

initial block Eo
0(z) employs β/2 = l delays seen in (23). Therefore,

the total number of delays in use is M(K−1)/2+β/2, which is just
the degree of the transfer function E(z). This finishes the proof.

4.2 β is odd
For the odd β = 2l + 1,(0 ≤ l < m), the starting block E0(z) has
minimal order two. From the LP condition (1) and PR condition, we
can also derive a set of matrix equations similar to the previous ones,
but they are more complex than before. Due to the space limitation,
the specific equations are omitted here. Different from the previous
two cases, it is very involved to obtain efficient rank conditions and
complete solutions to these equations due to the higher order of
E0(z). Although the complete solutions cannot be established, we
can at least find a simple but meaningful solution, thus obtain a
factorization for this case in the following form.

E0(z) =
1√
2
Φ0Λ(z)Γ (26)

where various matrices are,

Φ0 = diag(U0,V0)W2m+1diag(Im+1,Jm)

Λ(z) =





Im 0 0

0 z−1Im−l+1 0

0 0 z−2Il





Γ =











Γp 0 Γm 0 0
0 0 0 Γs Γt
0 1 0 0 0
0 0 0 Jm−lΓtJm−l Jm−lΓsJm−l

JlΓmJl JlΓpJl 0 0 0











where U0 = [U00,U01,q], V0 = [V00,V01] are square matrices
with size (m+1)×(m+1) and m×m, respectively, and Γp and Γm
are same as before, Γs = (Γ3 +Γ4)/2 and Γt = (Γ3 +Γ4)Jm−l/2,
where Γ3 and Γ4 are two arbitrary square invertible matrices with
size (m− l)× (m− l). We also explicitly show the inverse Γ−1 as
follows,

Γ−1 =













Γ̂p 0 0 0 Γ̂m
0 0 1 0 0

JlΓ̂mJl 0 0 0 JlΓ̂pJl
0 Γ̂s 0 Γ̂t 0

0 Jm−lΓ̂tJm−l 0 Jm−lΓ̂sJm−l 0













where Γ̂s =(Γ−1
3 +Γ−1

4 )/2 and Γ̂t = (Γ−1
3 −Γ−1

4 )Jm−l/2. The PR
property can be guaranteed if matrices U0 and V0 are invertible.

5. DESIGN EXAMPLES

In this section, several LPPRFBs were constructed by using the pro-
posed lattice factorization methods. We apply these methods in de-
signing LPPRFBs for two different cases studied above. For all
methods, the invertible matrices are decomposed by SVD through
orthogonal and diagonal matrices. The invertibility is ensured as
long as the diagonal elements are nonzero.

One objective function for optimization is minimization of the
stopband attenuation and passband error for ideal filter shape, which
is a classical one in FB design and optimization. Denote the pass-
band of the ith filter Hi(z) as [ωi,L,ωi,H ] and the transition band-
width as ε . The cost function to be optimized is C = Cpassband +
Cstopband, where

Cstopband =
P−1

∑
i=0

(

∫ ωi,L−ε

0
|Hi(e jω )|2dω +

∫ π

ωi,H+ε
|Hi(e jω )|2dω

)

Cpassband =
P−1

∑
i=0

∫ ωi,H−ε

ωi,L+ε
(|Hi(e jω )|−1)2dω

ε is selected to be 0.1 in the following example which used this ob-
jective function. Another optimization criterion which is more re-
lated to efficient image compression is the generalized coding gain
for LPPRFBs [11, 5], which for 1-D source is,

Ccoding gain = 10log10
σ2

x
(

∏M−1
i=0 σ2

i ‖ fi‖2
)1/M

(27)

where σ2
x is the input signal variance, σ 2

i is the variance of the ith
subband signal and ‖ fi‖2 is the norm of the ith synthesis filter im-
pulse response. It may also be easily extended to 2-D sources like
real images. We consider AR(1) process with ρ = 0.95, as well as
some images, as our sources.

The first design example is an 8-channel LPPRFB with filter
length 10, i.e., K = 1,β = 2, optimized for coding gain. The anal-
ysis bank for AR(1) case is shown in Fig. 2(a). The corresponding
synthesis bank is shown in in Fig. 2(b). The coding gain is shown



in Table 2. Compared to the restrictive paraunitary case [3], our
proposed general PR solution can avoid the inevitable zero filter
coefficient at fixed positions [3], thus obtaining better performance.

The second example is a 7-channel LPPRFB with filter length
11, i.e., K = 1,β = 4, optimized for ideal filter shape. The analysis
bank is shown in Fig. 2(c) and the corresponding synthesis bank
is shown in in Fig. 2(d). The last design example is a 9-channel
LPPRFB with length 41, i.e., K = 4,β = 5, optimized for ideal filter
shape. The analysis and synthesis banks are shown in Fig. 2(e) and
2(f), respectively.
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(a) 8-channel analysis bank
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(b) 8-channel synthesis bank
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(c) 7-channel analysis bank
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(d) 7-channel synthesis bank
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(e) 9-channel analysis bank
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(f) 9-channel synthesis bank

Figure 2: Design examples of critically sampled LPPRFBs

Here we also show the comparison of coding gains for different
LPPRFBs. Following the traditional transform coding terminology,
the LPPUFB with 8 channels and length 16 and LPPRFBs are also
called LOT and GLBT, respectively. We can see that our proposed
lattice structure can offer more flexible tradeoff for coding gain and
the filter length of LPPRFB. We plan to include some image coding
results in the final version besides this if space permits.

6. CONCLUSION

In this paper, we have presented new lattice structures and design
methods for a large class of LPPRFBs, where all FIR filters have
the same arbitrary length L = KM + β ,(0 ≤ β < M) and symme-
try center. The refined existence conditions for this class of FBs
are established. Lattice structures are developed for both even and
odd channel LPPRFBs. Compared to the existing works [4, 5, 6],
our structures are more general than theirs and cover them as special
cases. In addition, our result is also more general than the restrictive
LP paraunitary FB studied in [3] or constrained cosine-modulated
FB reported in [7]. Different from [8] whose design can only give

Table 2: Comparisons of coding gain (dB) for 8-channel critically
sampled LPPRFBs with different properties

LPPRFBs → 8×16 8×10 8×12 8×14 8×16
LOT GLBT GLBT GLBT GLBT

Sources ↓ [12] [5]

AR(1) 9.22 9.12 9.38 9.52 9.62

Lena 16.05 15.96 16.11 16.21 16.23

Cameraman 12.74 12.51 12.67 12.74 12.77

Goldhill 11.77 11.55 11.69 11.77 11.81

near PR FB with arbitrary length, the proposed design method can
structurally enforce the LP and PR properties into our lattice struc-
tures. To our knowledge, this is the most general LPPRFB with
the same length to date. Furthermore, minimality of the proposed
structure is proved which can guarantee the minimal number of de-
lays used in implementation. Finally, several design and application
examples are presented to validate the proposed novel lattice struc-
tures and to show the better trade off provided by the our design
methods.
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