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ABSTRACT

We propose a new approach for signal reconstruction from
non-uniform samples, without constraints on their locations.
We look for a function that belongs to a linear shift-invariant
space, and minimizes a variational criterion that is a weighted
sum of a least-squares data term and a quadratic term pe-
nalizing the lack of smoothness. This leads to a resolution-
dependent solution, that can be computed exactly by a fast
non-iterative algorithm.

1. INTRODUCTION

The representation of sampled data by means of a contin-
uous model is essential for common tasks such as interpo-
lation and resampling. Traditional methods achieve perfect
reconstruction of a signal from non-uniform samples, under
strong contraints on the samples locations [1, 2, 3, 4, 5]. If
these conditions are not met, one has to give up perfect re-
construction, and seek a smooth function that is a satisfying
model for the observed samples.

In this article, we propose a novel approach for unidi-
mensional signal reconstruction from non-uniform samples,
without any constraint on their locations. We adopt a vari-
ational approach where the reconstruction is formulated as
the minimization of a cost depending on two terms: a least-
squares data term on one side, and a smoothness quadratic
functional on the other side. The reconstructed function is
contrained to lie in a linear shift-invariant space, which en-
sures that the solution is parameterized by coefficients at-
tached to a uniform reconstruction grid with step T , and
not to the data locations. Thus, we aim at reconstructing
a continuous-time function fT (t) that depends on a resolu-
tion parameter T . Non-uniform to uniform resampling is a
straightforward application of our approach, where T is sim-
ply matched to the resolution of the uniform target lattice.

Besides its theoretical advantages, the proposed method
is computationally attractive. We present a fast, non-iterative
algorithm, that computes the coefficients determining the re-
constructed function. This original algorithm performs a
two-pass time-varying recursive filtering on the data.

The paper is organized as follows. We define the problem
and derive its solution in Sect. 2. We then propose a practical
algorithm for computing the solution in Sect. 3. Finally,
in Sect. 4, we discuss the properties of the reconstructed
function, and we present experimental results.

Throughout this paper, we use some notational con-
ventions: parentheses are used for continuous-time signals,
e.g., f (t), and brackets for discrete time signals, e.g., s =
(s[n])n∈Z. We define the z−transform of a discrete signal s as

S(z) = ∑n∈Z s[n]z−n. Continuous and discrete convolutions
are denoted by ∗.

2. VARIATIONAL RECONSTRUCTION IN A
LINEAR SHIFT-INVARIANT SPACE

2.1 Problem statement

Let us assume we have a finite number N of measurements
(s[n])n∈[0,N−1] at locations (x[n])n∈[0,N−1] within a finite in-
terval I. Typically, the data are non-uniform samples of an
unknown function s(t): s[n] = s(x[n]) for every n. We want
to reconstruct a continuous-time function f (t), defined for
every t ∈ I, that modelizes the discrete data.

The classical variational approach consists in solving a
minimization problem:

f = argmin
g∈Hr

(

N−1

∑
n=0

∣

∣g(x[n])− s[n]
∣

∣

2
+ λ

∫

I

|g(r)(t)|2 dt

)

. (1)

where g(r) is the rth derivative of g, for some integer r ≥ 1,
and Hr is the Sobolev space of order r [6]. This criterion is
composed of two antagonist terms, one controlling the close-
ness to the data, the other one enforcing the solution to be
smooth. The parameter λ > 0 is a Lagrangian parameter
working as a tradeoff factor between these two terms. The
integer r controls the smoothness of the reconstruction: the
values r = 1 and r = 2 are the most frequently used, and cor-
respond to searching a function that has maximum flatness,
and minimum curvature, respectively.

The solution to this variational problem can be expressed

as f (t) = ∑N−1
n=0 c[n] |t − x[n]|2r−1 + p(t) [7]. It is made of a

polynomial p(t) of degree less than r and a linear combina-

tion of radial basis functions (RBF) |t|2r−1 positioned at the
sampling locations x[n]. This implies that the solution f (t) is
a non-uniform polynomial spline of degree 2r−1 with knots
at the x[n].

2.2 Reconstruction in a shift-invariant space

In this work, we propose to minimize the same criterion as in
(1), but in a linear shift-invariant (LSI) space: if we let T > 0
be an arbitrary real number, the LSI space VT (ϕ) is spanned
by the shifts of a generating function ϕ( t

T
):

VT (ϕ) =
{

∑
k∈Z

cT [k]ϕ(
t

T
− k) : (cT [k]) ∈ R

Z

}

. (2)

So, we look for a function fT (t) ∈VT (ϕ) having the form

fT (t) = ∑
k∈Z

cT [k]ϕ(
t

T
− k), (3)
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where the discrete coefficients cT [k] are the unknowns to be
determined, so as to minimize the criterion in (1). In other
words, our approach consists in choosing the reconstruction
space VT (ϕ) a priori, and to look for the better function in
this space, in the sense of the criterion in (1).

For the problem to be well posed, we have to make some
hypotheses. First, we assume that ϕ is bounded and has
compact support (included in the interval (−W,W ) for some

W ∈N), and that
∫

R
|ϕ(r)(t)|2dt < ∞. We also assume that the

functions {ϕ( t
T
− k)} form a Riesz basis of VT (ϕ)∩L2(R).

Moreover, we suppose that there are at least r distinct loca-
tions x[n].

Although ϕ may be almost arbitrary, we adopt the choice

ϕ = β 2r−1, the centered B-spline of degree 2r−1 [8]. Thus,
fT is a uniform polynomial spline of degree 2r − 1, with
knots at the T k. With this choice, when the samples are uni-
form at the locations x[n] = T n, our solution coincides with
the global solution in (1), that is, fT minimizes the criterion
not only in VT (ϕ), but also in the whole space Hr.

So, our method depends on three parameters r, T , λ ,
whose influence will be discussed in Sect. 4.

2.3 Solution to the minimization problem

Finding the reconstructed function fT (t) amounts to deter-
mining the sequence cT in (3) so that the cost function in (1)
is minimized. In order to express this cost Ψ(cT ), we first
rewrite the data fidelity term as a function of cT :

N−1

∑
n=0

∣

∣ fT (x[n])−s[n]
∣

∣

2
=

N−1

∑
n=0

(

s[n]− ∑
k∈Z

cT [k]ϕ(
x[n]

T
− k)

)2

.

(4)
Now, we rewrite the variational term as a function of cT .

We look for a reconstruction in the finite interval I, assumed
for convenience to have the form I = [0,KT ] for some K ∈N.
Since fT is completely determined within I by the coeffi-
cients cT [k], k ∈ [−W + 1,K +W − 1], we set cT [k] = 0 for
k /∈ [−W + 1,K +W −1]. First, let us write the integral over
R, and not I. To this aim, we introduce the autocorrelation
of ϕ : aϕ(t) = ϕ̄ ∗ϕ (t), using the flip operator ϕ̄(t) = ϕ(−t).
We then introduce the discrete sequence qϕ,r defined by

qϕ,r[k] = (−1)r

T
a

(2r)
ϕ (k). Since ϕ(r)(−t) = (−1)rϕ̄(r)(t), and

differentiations commute with convolutions, we have:

∫

R

∣

∣ f
(r)
T (t)

∣

∣

2
dt =

1

T 2

∫

R

(

∑
k∈Z

cT [k]ϕ(r)(
t

T
− k)

)2

dt

=
1

T
∑

k,l∈Z

cT [k]cT [l]

∫

R

ϕ(r)(x− (k− l))ϕ(r)(x)

dx

=
(−1)r

T
∑

k,l∈Z

cT [k]cT [l] (ϕ̄(r) ∗ϕ(r))(k− l)

=
(−1)r

T
∑

k,l∈Z

cT [k]cT [l]a
(2r)
ϕ (k− l)

= ∑
k∈Z

cT [k] (cT ∗ qϕ,r)[k]. (5)

Since we concentrate on spline reconstruction
(ϕ = β 2r−1), we can give the general form of the cor-
responding filter qϕ,r. B-splines verify the simple relation

aβ 2r−1(t) = β 4r−1(t), and the derivative of a spline is also a

spline of lower degree [8]. Using these properties, we get for
r = 1 and r = 2, respectively, Qβ 1,1(z) = (−z + 2− z−1)/T

and Qβ 3,2(z) = (z3 −9z+ 16−9z−1+ z−3)/6T .

It is convenient to express the cost Ψ(cT ) in terms of ma-
trices and vectors

Ψ(c) = ‖Mc− s‖2 + λcTQc, (6)

using the following quantities (·T is the transpose operator):

c =
[

cT [−W + 1] · · · cT [K +W −1]
]T

,

s =
[

s[0] s[1] · · · s[N −1]
]T

,

M = [M[n,k]] with M[n,k] = ϕ(
x[n]

T
− k), (7)

for n ∈ [0,N −1],k ∈ [−W + 1,K +W −1],

Q = [Q[k, l]], for k, l ∈ [−W + 1,K +W −1],

with Q[k, l] = qϕ,r[k− l] =
(−1)r

T
a

(2r)
ϕ (k− l),

except for the first and last rows of Q that contain particular
values, because Ψ(cT ) is defined with the integral over I,
and not R as in (5). These special values are in squares of
size (2W −1)2 in the lower-left and upper-right corners of the
matrix. To compute them for the left boundary (this would be
the same for the right one), we have to develop the left-hand
side of the following equality, and identify the coefficients
with its right-hand side:

∫ 2W−1

0

∣

∣

∣

W−1

∑
k=−W+1

cT [k]ϕ(r)(
t

T
− k)

∣

∣

∣

2

dt =
W−1

∑
k,l=−W+1

Q[k, l]cT [k]cT [l].

(8)
For instance, in the cases ϕ = β 1,r = 1 and ϕ = β 3,r = 2,
Q takes the respective forms:

1

T



















1 −1 0 0 0 · · ·

−1 2 −1 0 0
. . .

0 −1 2 −1 0
. . .

0 0 −1 2 −1
. . .

0 0 0 −1 2
. . .

.

.

.
. . .

. . .
. . .

. . .
. . .



















,
1

6T



















2 −3 0 1 0 · · ·

−3 8 −6 0 1
. . .

0 −6 14 −9 0
. . .

1 0 −9 16 −9
. . .

0 1 0 −9 16
. . .

.

.

.
. . .

. . .
. . .

. . .
. . .



















.

(9)

Now, let us define A= MTM+λQ and y = MTs. Min-
imizing the cost Ψ(c) amounts to solving the linear system

Ac = y. (10)

or equivalently, the set of equations, for k ∈ [−W + 1,K +
W −1]:

∑
l∈Z

[

N−1

∑
n=0

ϕ(
x[n]

T
− k)ϕ(

x[n]

T
− l)+ λ Q[k, l]

]

cT [l] =

N−1

∑
n=0

ϕ(
x[n]

T
− k)s[n]. (11)

The linear system in (10) has a unique and well defined
solution, since A is symmetric and positive definite. We now
exploit its particular structure for solving it efficiently, with-
out expliciting the underlying matrices.
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3. EFFICIENT IMPLEMENTATION

3.1 Strategy

We have seen that our problem boils down to solving the
linear system Ac = y that is symmetric and positive defi-
nite. Since ϕ has compact support, this system is also band-
diagonal with only 4W −1 diagonals containing non-zero en-
tries. Thus, an efficient resolution strategy is as follows:

1. We perform the Cholesky decomposition of A [9]; that
is, we look for the lower triangular matrix L such that
A = LLT. L is band-diagonal with 2W diagonals con-
taining non-zero entries (i.e. L[k, l] 6= 0 only if −2W <
k− l ≤ 0).

2. We solve the lower triangular system L
◦
c = y by forward

substitution [9].

3. We finally solve the upper triangular system LTc =
◦
c by

backward substitution [9].

Let us detail the practical implementation of these three
steps. The Cholesky decomposition is performed row by row
by a fast algorithm that takes advantage of the band-diagonal
structure of A. In fact, the decomposition is straightforward
once the equality A = LLT is decomposed, which yields:

L[k,k] =
(

A[k,k]−
−1

∑
j=−2W+1

L[k,k + j]2
)1/2

, (12)

For i = 1 . . .2W −1, L[k + i,k] =

1

L[k,k]

(

A[k,k + i]−
−1

∑
j=i−2W+1

L[k,k + j]L[k + i,k + j]
)

. (13)

If these two equations are evaluated in the increasing order
k = kmin . . .kmax, it appears that the entries of L that occur on
the right-hand side are already determined at the time they
are needed. Once these values have been calculated, the first
triangular system is solved by: for k = kmin . . .kmax,

◦
cT [k] =

1

L[k,k]

(

y[k]−
−1

∑
i=−2W+1

L[k,k + i]
◦

cT [k + i]
)

, (14)

and the second linear system is solved by: for k =
kmax . . .kmin,

cT [k] =
1

L[k,k]

(

◦
cT [k]−

2W−1

∑
i=1

L[k + i,k]cT [k + i]
)

. (15)

Now, we have all the ingredients to give the practical
algorithm that computes the coefficients cT [k],k ∈ [−W +
1,K +W −1].

3.2 Practical algorithm

It is possible to perform the Cholesky decomposition (12),
(13) and the forward substitution (14) in a single forward
pass. If the samples are ordered such that x[n + 1] ≥ x[n]
for every n, the data set (x[n],s[n]) can be accessed progres-
sively. Hence, this pass can be computed on-the-fly, as the
data are made available. If the data locations are not sorted,
or if N >> K, the computation time will be consumed mostly
for accessing the data. In these cases, or if it is not useful
to compute the coefficients online from the data, it is much

more appropriate to use the following version of the algo-
rithm, that consists in three passes. Let us define the auxiliary
variables a[i] = A[k,k + i] and u[k, i] = L[k + i,k]. The first
pass is performed on the data, so as to construct the upper
part of the matrix A (that contains all the information since
A is symmetric), that is stored temporarily in the coefficients

u[k, i]. The y[k] are stored in the
◦

cT [k]. During the second
pass, the Cholesky decomposition and the forward substitu-

tion are performed in place, that is, the u[k, i] and
◦

cT [k] take
their true values. Finally, during the third pass, the backward
substitution (15) is performed.

• First pass:
for k from −W + 1 to K +W −1 {

◦
cT [k] = 0;
for i from 0 to min(2W −1,K +W −1− k),

u[k, i] := λ Q[k,k + i];
}
for n from 0 to N −1,

for k from ⌊
x[n]

T
+ 1−W⌋ to ⌈

x[n]

T
−1 +W⌉ {

for i from 0 to min(2W −1,K +W −1− k),

u[k, i] := u[k, i]+ ϕ(
x[n]

T
− k)ϕ(

x[n]

T
− k− i);

◦
cT [k] :=

◦
cT [k]+ ϕ(

x[n]

T
− k)s[n];

}
• Second pass:

for k from −W + 1 to K +W −1 {
imin := max(−2W + 1,−W + 1− k);
imax := min(2W −1,K +W −1− k);

u[k,0] :=
(

u[k,0]−
−1

∑
i=imin

u[k + i,−i]2
)1/2

;

◦
cT [k] :=

1

u[k,0]

(

◦
cT [k]−

−1

∑
i=imin

u[k + i,−i]
◦

cT [k + i]
)

;

for i from 1 to imax,

u[k, i] :=
1

u[k,0]

(

u[k, i]−

−1

∑
j=max(i−2W+1,−W+1−k)

u[k + j,− j]u[k + j, i− j]
)

;

}
• Third pass:

for k from K +W −1 down to −W + 1 {
imax := min(2W −1,K +W −1− k);

cT [k] :=
1

u[k,0]

(

◦
cT [k]−

imax

∑
i=1

u[k, i]cT [k + i]
)

;

}

This algorithm can be interpreted as a two-pass time-
varying recursive filtering, with filters computed on-the-fly
by the Cholesky decomposition. This decomposition is very
stable numerically [9]. However, the condition number of the
linear system depends on the sampling locations. A round-
off error that occurs on a coefficient cT [k] can propagate to
its neighbors inside a large region without samples, but its
amplitude, limited to the machine accuracy, will not grow.
Therefore, this is not a problematic issue.
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Figure 1: Uniform linear splines with different resolutions (ϕ = β 1, r = 1, λ = 0.01) fitted on 7 point samples in the interval
[0,10]. (a): T = 0.1. (b): T = 1. (c): T = 2. (d): T = 5. Each spline has 10/T +1 knots at the T k, k ∈ [0,10/T ]. When T → 0,
fT approaches the non-uniform smoothing spline of degree 1, which has its knots at the non-uniform sampling locations.

3.3 Computation time and storage requirements

The coefficients cT [k] can be computed in place, replac-

ing the intermediate values
◦

cT [k]. Apart from the memory
needed for the results cT [k], 2W (K + 2W − 1) units of aux-
iliary storage are required for the coefficients u[k, i], that are
calculated during the second pass and used in the third one.

The computation time of the proposed algorithm is made
of: O(W 2N), O(W 2K), O(WN) for the calculation of the

elements in A, LT and y respectively, and O(KW ) for the
forward and backward substitutions (where O(x) stands for

“proportional to x”). So, the total time reduces to O(W 2(N +
K)); it is linear in N and K, which is particularly attractive.
An implementation in C language of the proposed implemen-
tation, running on a 1.6 GHz laptop PC, gives a computation
time of 0.001s for a reconstruction from N = 10000 samples
randomly located in the interval [0,100] (K = 100, T = 1).

4. INFLUENCE OF THE PARAMETERS

The parameter r controls the kind of smoothness that is en-
forced on the solution. In the simpler case r = 1,ϕ = β 1

illustrated in Fig. 1, the reconstruction is piecewise linear,
with knots at the Tk, k ∈ Z, which means that fT (t) is linear

on each interval [T k,T (k + 1)]. If r = 2,ϕ = β 3, as in Fig.
2, the reconstruction is smoother: it is twice continuously
differentiable.

The parameter T controls the coarseness of the represen-

tation. When reconstructing a signal over an interval [0,S],
we obtain a parametric solution with K + 1 = S/T + 1 de-
grees of freedom. If this representation has to be sparse, e.g.
in coding applications, or if the computation time is limited,
then T will be choosen relatively large. Conversely, when
T → 0, the solution fT becomes closer and closer to the non-
uniform solution in the RBF framework. The influence of T
is illustrated in Fig. 1, with ϕ = β 1,r = 1. In fact, there is
a one-to-one correspondence between the coefficients cT [k]
and the point values fT (T k). That is why we say that fT has
resolution 1/T . There are plenty of problems where it is use-
ful to fit a model with given resolution on discrete data. All
non-uniform to uniform resampling problems, like rendering
on a display device or image resizing, could benefit from our
approach, with T simply matched to the resolution (cut-off
frequency) of the target lattice.

The regularization factor λ is a key parameter: an exces-
sive value will oversmooth the solution, while a small value
will provide a solution that is close to the data, but may have
large disturbing variations. If λ is very small, the regular-
ization term in (1) is neglictible in comparison with the fit-
to-data term. So, the least-squares term is first minimized,
and the remaining degrees of freedom are used to minimize
∫

I
|g(r)(t)|2. Therefore, fT almost passes through the sam-

ples in a region where the sampling set is sparse (Fig. 2 (b),
(c), (d), for t > 3), and large gaps are “in-painted” in a smooth
way. Conversely, if λ is large, fT is smooth, whatever the
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Figure 2: Uniform cubic splines with knots at the integers (ϕ = β 3, r = 2, T = 1) fitted on 7 point samples in the interval
[0,10], for different values of the smoothing parameter λ . (a): λ = 1.0. (b): λ = 0.001. (c): λ = 0.0001. (d): limit case when
λ → 0. fT is parameterized by 13 coefficients cT [k],k ∈ [−1,11].

locations x[n] of the data, as in Fig. 2 (a). Thus, in the noise-
free case, it is tempting to choose λ very small. However,
this may result in large unexpected oscillations, as shown in
Fig. 2 (c), (d): the exact interpolation of the samples is a too
strong constraint. Moreover, if the measurements are noisy,
it is not suitable to enforce interpolation. In all cases, λ has
to be tuned so as to achieve a tradeoff between the closeness
of fit and the smoothness of the solution. There is no opti-
mality rule, and the best value for the problem at hand has to
be adjusted empirically on a case by case basis.

5. CONCLUSION

In this article, reconstruction from non-uniform samples has
been formulated as a variational problem in a shift-invariant
space. This formulation allows to bypass the usual limita-
tions on the samples locations, that are often not pratically
met. In comparison with a pure variational treatment, the re-
constructed function has a given resolution that can be tuned,
for example to match the representation capabilities of a tar-
get lattice for resampling purpose. We proposed a fast al-
gorithm that computes the exact solution of the optimization
problem, by solving a band-diagonal linear system without
having to explicit any matrix.
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