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ABSTRACT
In this paper a denoising technique for digital gray value
images corrupted with additive Gaussian noise is presented.
We studied a recently proposed hard thresholding technique
which uses a two stage selection procedure in which coeffi-
cients are selected based on their magnitude, spatial connect-
edness and interscale dependencies. We construct a shrink-
age version of the algorithm which outperforms the origi-
nal one. We also present a new hard thresholding algorithm
which incorporates the spatial connectivity information in a
more simple and efficient way and construct a shrinkage ver-
sion of it. The new algorithms are faster and lead to better
denoising performances compared to the original one, both
visually and quantitatively.

1. INTRODUCTION

Due to its energy compaction property, the wavelet transform
is a practical tool for image denoising. Denoising is usually
done by shrinking the wavelet coefficients: coefficients that
contain primarily noise should be reduced to negligable val-
ues, while the ones containing a significant noise-free com-
ponent should be reduced less. In early methods only the
coefficient magnitude was used to predict whether a coeffi-
cient represents useful signal or mainly noise [2, 11]. More
recent methods also include intra- and interscale coefficient
dependencies [4].

Another kind of information that can be integrated in the
denoising scheme is geometrical information, where one as-
sumes that image features (lines, edges, ...) show a cer-
tain directional continuity. The methods of [7] , [6] and
[10] combine the intra- and interscale dependencies with a
bilevel Markov Random Field (MRF) model, which encodes
the prior knowledge about the spatial clustering of wavelet
coefficients, i.e., which encodes the ‘geometrical properties’
of image details. We recently proposed another technique
which exploits geometrical information [5]: first the wavelet
coefficients belonging to image features are detected, then an
averaging step is performed. Although the results are good,
the method has many (image dependent) thresholds which
have to be chosen. The method also fails at high noise levels.

In this paper, we statistically analyse a recently proposed
feature-based hard thresholding algorithm [1]: only those co-
efficients with a high magnitude and a sufficiently large spa-
tial support (the number of large coefficients connected to
them) are retained. In [1] the authors claim that “wavelet

THIS RESEARCH WAS FINANCED WITH A SPECIALIZATION
SCHOLARSHIP OF THE “FLEMISH INSTITUTE FOR THE PROMO-
TION OF INNOVATION THROUGH SCIENCE AND TECHNOLOGY
IN FLANDERS (IWT-VLAANDEREN)”. A. PIŽURICA IS A POSTDOC-
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shrinkage methods which either select or reject wavelet co-
efficients (i.e. hard thresholding algorithms) are statistically
better than the probabilistic methods”. However, in this pa-
per we present a shrinkage version of their algorithm and
prove that it results in a better denoising performance. We
also analysed the optimality of their coefficient classifica-
tion in terms of its closeness to the ideal, oracle threshold-
ing. Based on our findings we propose a new, better mea-
sure to describe the spatial surrounding and we integrate the
measure into a hard thresholding and a shrinkage denoising
scheme. Both schemes outperform the original denoising
method, both visually as in terms of PSNR. We name the
proposed methods ‘geometrical’ because they employ the ge-
ometry of wavelet coefficient clusters.

The method from [1] is explained in Section 2. In Sec-
tion 3 we describe a novel rule for describing the spatial sur-
rounding of the wavelet coefficients. This rule is also inte-
grated into a hard thresholding framework. In Section 4 we
construct shrinkage versions of both the original algorithm
from [1] and our new hard thresholding algorithm. Section
5 describes the experiments we have done and in Section 6 a
conclusion is given.

2. FEATURE BASED HARD THRESHOLDING

First we will explain the notation used in the rest of the paper.
We restrict ourself to images corrupted with additive white
Gaussian noise. Due to the linearity of the wavelet transform
the additive noise model in the image domain remains addi-
tive in the transform domain as well:

wk,d(x,y) = yk,d(x,y)+nk,d(x,y) (1)

In this expression wk,d(x,y) and yk,d(x,y) are the noisy,
resp. noisefree, wavelet coefficients of scale k and orienta-
tion d and nk,d(x,y) is the noise component.

The method from [1] uses a redundant wavelet transform
with the Haar wavelet and five resolution scales. A first
threshold τ is used to determine a binary label Ik,d(x,y) for
each coefficient:

Ik,d(x,y) =

{
1, if |wk,d(x,y)| > τ
0, else (2)

The coefficients with Ik(x,y) = 1 are those with a suffi-
ciently large magnitude and are called the valid coefficients.
Now for each valid coefficient the support value Sk,d(x,y)
is calculated: Sk,d(x,y) is the total number of valid coeffi-
cients which are spatially connected to the valid coefficient,
see Fig. 1. Sk,d(x,y) is used to refine the original binary map
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Figure 1: The white coefficients are the invalid ones. The
support value for the two black coefficients on the left side is
2, for the four other black coefficients the support size is 4.

Ik,d(x,y) to a new map Jk,d(x,y):

Jk,d(x,y) =

{ 1, if Sk,d(x,y) > s,
or Jk+1,d(x,y)Ik,d(x,y) = 1

0, else
(3)

The parameter s is the required number of support
coefficients needed for selection. Coefficients with
Sk,d(x,y) > s are called spatially supported, coefficients with
Jk+1,d(x,y) = 1 are called supported by scale. Jk,d(x,y) is
equal to one when there exist enough wavelet coefficients of
large magnitude around the current coefficient, i.e., when the
coefficient is likely to belong to a geometrical feature, like an
edge or a line. However, it is also one when the magnitude
of the coefficient is large (Ik,d(x,y) = 1) and the coefficient
on the same position but a coarser scale is large and locally
supported (Jk+1,d(x,y) = 1). Thus the method selects coef-
ficients which are sufficiently large and locally supported as
well as isolated coefficients which are sufficiently large and
supported by scale. Jk,d(x,y) is calculated recursively, start-
ing from the coarsest resolution scale. Good choices for the
parameters τ and s are [1]:

τ(σn) = 2.37σn −2.30 (4)

s(σn) = b0.24σn +4.21c (5)

with σn the standard deviation of the noise, which is es-
timated with the method from [3]. Those threshold val-
ues were obtained experimentally by evaluating their perfor-
mance on different test images. The estimation ŷk,d(x,y) of
the noise free coefficient yk,d(x,y) becomes:

ŷk,d(x,y) =

{
wk,d(x,y), if Jk,d(x,y) = 1
0, if Jk,d(x,y) = 0 (6)

3. NEW COEFFICIENT SELECTION PROCEDURE

We statistically analysed the selection criterium (3). In or-
der to do this we defined an optimal binary mask Jopt

k,d (x,y)
for each detail image. This optimal mask uses information
from the noise-free wavelet coefficients. Recall that the ideal
coefficient selection in terms of mean squared error is [8]:

Jopt
k,d (x,y) =

{
1, if | yk,d(x,y) |≥ σn
0, else (7)

We analyse statistically the classification rule (3) by compar-
ing the resulting masks with the optimal classification from

(7). The coefficients Jk,d(x,y) for which Jopt
k,d (x,y) = 1 consist

of true positives (TP’s) and false negatives (FN’s):

T Pk,d(x,y) =

{
1, if(Jopt

k,d (x,y) = 1)AND(Jk,d(x,y) = 1)
0, else

(8)

FNk,d(x,y) =

{
1, if(Jopt

k,d (x,y) = 1)AND(Jk,d(x,y) = 0)
0, else

(9)
The denoising result can be improved when we succeed in
reducing the number of FN’s, while retaining the TP’s.

3.1 Support value
The method from [1] uses the magnitude of wk,d(x,y) and
the support value Sk,d(x,y) to distinguish between noise co-
efficients on the one hand and useful coefficients on the other
hand. However, this approach has two disadvantages:

A first disadvantage is that the calculation of the sup-
port value Sk,d(x,y) is a time consuming operation. A second
drawback is that the threshold values τ(σn) on the magnitude
wk,d(x,y) are high, see (4). Due to this a lot of useful edge
coefficients are falsely removed from the mask. Fig. 2 shows
the number of TP’s and FN’s obtained with the classifica-
tion rule (3). We present results for the two finest resolution
scales of the Lena test image. On Fig. 2 we see that there
are more FN’s than TP’s, which means that less than 50%
of the coefficients for which Jopt

k,d (x,y) = 1 are detected. We
can conclude that the coefficient selection method is mainly
focused on avoiding false positives and because of that ex-
cludes too many real edge coefficients.

3.2 Local mean coefficient magnitude
To overcome the abovementioned drawbacks of the coeffi-
cient selection procedure from [1] we analysed some other
significance measures. Instead of calculating the support
value Sk,d(x,y), we did some experiments with counting the
number of valid coefficients Ik(x,y) = 1 inside a small win-
dow around each coefficient. However, the best result was
obtained by replacing the support value Sk,d(x,y) by the
mean coefficient magnitude mk,d(x,y) calculated in a local
window centered around each coefficient:

mk,d(x,y) =
1

(2W +1)2

x+W

∑
i=x−W

y+W

∑
j=y−W

∣∣wk,d(i, j)
∣∣ (10)

with W the half window size. Using this measure has the
advantage that the preliminary classfication step (2) can be
omitted. This measure was also used in [9], where it was
integrated in a Bayesian statistical framework. Our new pro-
posed hard thresholding algorithm becomes:

ŷk,d(x,y) =

{
wk,d(x,y), if mk,d(x,y) > τm
0, if mk,d(x,y) ≤ τm

(11)

The optimal value for τm was experimentally determined as:

τm(σn) = 1.5σn (12)

4. FROM HARD THRESHOLDING TO SHRINKING

In [1] the authors claim that hard thresholding methods
should perform better than (probabilistic) shrinkage meth-
ods. In this section we convert their original hard threshold-
ing algorithm (described in Section 2) and our proposed hard
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Figure 2: The percentage of TP’s and FN’s for the first two scales of the Lena image, obtained with the coefficient selection
method from (3).

thresholding algorithm (described in Section 3.2) to shrink-
age based approaches. For the shrinkage functions we use
simple linear models. In the next section we show that sig-
nificant improvements are obtained by going to a shrinkage
approach, even with our simple linear models.

4.1 Shrinkage version of the original algorithm
We adapted the original hard thresholding algorithm in two
ways. A first modification aims at obtaining better masks.
The preliminary classification Ik,d(x,y), see (2), is replaced
by Ĩk,d(x,y):

Ĩk,d(x,y) =

{
1, if |wk,d(x,y)| > τ2 AND |wk+1,d(x,y)| > τ3
0, else

(13)
with a lower threshold τ2 on the coefficient magnitude (τ2 <

τ) and an additional interscale criterion. The lower value for
τ2 aims at reducing the number of FN’s, while the extra in-
terscale criterion removes FP’s from the mask. Good choices
for τ2 and τ3 (experimentally determined) are:

τ2 = 2σn , τ3 = σn (14)

Instead of the hard threshold imposed on the spatial support,
we attach a shrinkage function to it. The form of the shrink-
age function is given in Fig. 3. The value of sshrink was ex-
perimentally determined as:

sshrink(σn) = b0.24σn +4.21c (15)

In order to estimate the noise free coefficient value ŷk,d(x,y),
each noisy coefficient wk,d(x,y) is multiplied by the shrink-
age factor obtained for that coefficient.

4.2 Shrinkage version of the proposed algorithm
We have also developed a shrinkage version of our hard
thresholding algorithm proposed in section 3.2. The shrink-
age factor for each coefficient depends on the mean coef-
ficient magnitude mk,d(x,y) calculated around that coeffi-
cient. The form of the shrinkage function is given in Fig. 4.
The values of m1,shrink and m2,shrink are experimentally deter-
mined as:

m1,shrink(σn) = σn , m2,shrink(σn) = 2σn (16)

1

S(x,y)

Shrinkage factor

s
0

shrink

Figure 3: Proposed shrinkage function for the waveletcoeffi-
cients. The shrinkage function is based on the support value
Sk,d(x,y).

1

Shrinkage factor

0
m(x,y)m1,shrink m2,shrink

Figure 4: Proposed shrinkage function for the waveletcoef-
ficients. The shrinkage function is based on the mean value
mk,d(x,y) of the coefficients in a small local window around
each coefficient.

Again, the noise free coefficient value yk,d(x,y) is estimated
by multiplying each noisy coefficient wk,d(x,y) with the
shrinkage factor obtained for that coefficient.

5. RESULTS AND DISCUSSION

Table 1 lists peak signal to noise ratio (PSNR) values for
three well known graylevel images: Lena (512x512), Bar-
bara (512x512) and House (256x256). For each noise level,
we considered 10 noisy versions of each image. The PSNR
values listed in Table 1 are the mean values of the 10 individ-
ual denoising results. The results are obtained with the Haar
wavelet and 4 resolution scales. For the calculation of (10)
we used W = 2.

From Table 1 we can conclude that the new hard thresh-
olding algorithm, which thresholds on the local magnitude
around each coefficient, is not only faster than the original
one, but also yields better denoising results. For images with
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Table 1: Denoising results [PSNR] of the proposed methods compared to the original method, for different values of σn. All
results are obtained with the Haar wavelet and 4 resolution scales.

Standard deviation of noise
10 20 30 40

Lena Hard thresholding from [1] 34.4 31.5 29.8 28.5
(512x512) Proposed shrinkage version of [1] 34.7 31.8 30.1 28.8

Proposed hard thresholding method 34.8 31.9 30.2 28.9
Proposed shrinkage method 35.1 32.1 30.2 28.9

Barbara Hard thresholding from [1] 31.8 27.6 25.4 24.1
(512x512) Proposed shrinkage version of [1] 32.1 28.2 26.1 24.8

Proposed hard thresholding method 32.6 28.5 26.3 24.8
Proposed shrinkage method 33.0 28.9 26.6 25.2

House Hard thresholding from [1] 34.8 31.8 30.0 28.7
(256x256) Proposed shrinkage version of [1] 35.1 32.1 30.4 29.1

Proposed hard thresholding method 34.9 31.9 30.2 29.1
Proposed shrinkage method 35.2 32.2 30.4 29.1

little texture, like the House image, the improvements are
small (about 0.1dB), but for more detailed images like Lena
or Barbara the PSNR gain is significant (0.4dB for Lena,
0.8dB for Barbara).

We can also conclude that the shrinkage variants of the
algorithms outperform their hard thresholding versions. For
both algorithms a PSNR gain of at least 0.3dB can be ob-
served. When we compare our new shrinkage approach with
the original hard thresholding technique from [1], we notice
a PSNR gain which goes from 0.4dB for low textured im-
ages (House) to more than 1dB for highly textured images
(Barbara).

A visual comparison of the original thresholding algo-
rithm and our new shrinkage approach is given in Fig. 5. On
top we see a denoised version of a part of the Barbara im-
age (which was corrupted with Gaussian noise of σn = 10)
using the hard thresholding technique from [1]. On the bot-
tom we see a denoised version of the same noisy image, us-
ing our new method. When comparing the two results one
can clearly see that our shrinkage method results in a much
smoother and less blocky image. Also the texture is restored
in a better way.

6. CONCLUSION

We studied a hard wavelet thresholding algorithm for image
denoising in which coefficients are chosen based on their
magnitude, spatial connectedness and interscale dependen-
cies. We developed a simple shrinkage version of the al-
gorithm and showed that it outperforms the hard threshold-
ing version (PSNR improvements of about 0.3dB). We also
replaced the spatial connectedness measure by a more sim-
ple one, which is based on the mean magnitude of the sur-
rounding wavelet coefficients. We integrated the new mea-
sure into a hard thresholding and a shrinkage denoising algo-
rithm. The new shrinkage algorithm outperforms the original
one both visually and in terms of PSNR. For low textured im-
ages improvements of about 0.4 dB are obtained, for highly
textured images the improvements climb to 1 dB and more.
Future work will include a study of other wavelets than the
Haar wavelet. We will also investigate the possibilities to
integrate interscale measures into our shrinkage approach.
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Figure 5: Visual comparison of the original hard thresholding algorithm [1] (top) and our new shrinkage algorithm (bottom).
The results are obtained for the Barbara image with Gaussian noise of σn = 10 added.
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