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ABSTRACT
We propose a correction method for magnetic resonance

(MR) images to eliminate the effects of the inhomogeneity of
the radio-frequency (RF) pulses and of the sensivity of the
RF reception particularly in the case of T1-weighted images.
In this case the effects of the pulse inhomogeneities vary
with the tissues, which prevents the use of simpler correction
techniques based on a global multiplicative bias field model.
Here, the MR signal is modeled as a sum of contributions of
all the tissues present in the object. For sake of generality,
each pixel is assumed to contain an unknown proportion of
each tissue, so that the usually adopted segmentation based
approach is not valid in the present context. The number of
tissues composing the object as well as the MR characteris-
tics of each tissue are required. Several images with different
acquisition parameter values are also needed. A penalized
least-square criterion is proposed to estimate the RF emitted
field, the RF sensitivity reception and the proportion of each
tissue. The criterion contains smoothness regularization for
both RF fields. We solve the optimization problem using a
conjugate gradient algorithm within a Gauss-Seidel iterative
scheme. Results based on real MR images of fish demonstrate
the effectiveness of the method.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is an advanced tech-
nique providing valuable information in various kinds of ap-
plications such as medical diagnosis, food products analy-
sis [1] or the study of fluids in porous materials [2]. MRI
can be used for visual inspection, but it is sometimes needed
to get some quantitative information from the images. How-
ever, the process of MR image formation introduces various
artefacts which may corrupt the information expected to be
retrieved from the images. A correction algorithm is then
needed to overcome this problem.

The artefacts in MRI can be divided in two categories,
whether they corrupt the localisation of the signal or not.

The MR signal is the sum of the RF signals issued from
all the protons positionned in the permanent magnetic field
B0, and experimenting a sequence of pulses of RF magnetic
field. This signal is acquired through a coil. A gradient of
magnetic field G(r) that linearly depends on the position r
is added to B0. As the signal frequency of the protons is
proportional to B0 +G(r), the protons can be located thanks
to the Fourier transform which computes the amplitude of

each frequency [3]. However, inhomogeneities of permanent
field and of the gradients generate signal localisation arte-
facts. These artefacts can be neglected in the case of low-
field MR imaging, which is the frame of our work, with the
use of sequences of RF pulses such as spin-echo.

On the other hand, two phenomena produce artefacts that
do not affect the localisation but introduce spatial variations
in the signal intensity:
• The sensitivity of the RF reception (RFR) coil is not ho-

mogeneous.
• Spatial inhomogeneities of the RF emission coil, coupled

with off-resonance phenomenon linked to B0 inhomo-
geneities, produce spatial variations of applied RF pulses
(RFP), which in turn influence the signal intensity [4].

The inhomogenities due to RFP and RFR influence the image
formation process in two different ways. The RFR effect can
be considered as a multiplicative bias, while the influence of
RFP depends on the proton longitudinal relaxation times T1,
particularly in spin-echo T1-weighted images [5]. Such im-
ages are commonly used in MR applications, since the con-
trast between tissues with different T1 can be enhanced using
appropriate values of the repetition time TR. For example,
this is the case for brain tissues (i.e., gray matter, white mat-
ter and cerebrospinal fluid) or for fat and muscle.

Different approaches to the global problem of RF in-
homogeneities can be found in the literature [6]. Some of
them try to remove low-frequency variations of the signal.
This is done with homomorphic filtering in [7, 8], and with
a more sophisticated method where the bias field and the
intensity distribution of the tissues are iteratively estimated
in [9]. However, such approaches are not suited to appli-
cations where the low-frequency variations of the signal are
partly due to the object itself. In order to incorporate a pri-
ori information, many authors proposed methods for the es-
timation of the bias field based on tissue segmentation. The
expectation-maximization algorithm (EM) is used in [10] to
alternately estimate the bias and the statistical characteristics
of each tissue. This algorithm was improved in [11] thanks to
the modeling of partial volume. EM was also chosen in [12],
where additional morphological information was taken from
an atlas. Finally, some authors consider a Markov random
field model to describe spatial correlations [13, 14]. These
methods make the assumption that each pixel contains only
one kind of tissue. While this is well-suited to the impor-
tant case of cerebral imaging, it does not correspond to the
general situation, as found for example in MRI muscle ex-
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amination [15], or in food products analysis such as fish [16]
or bread [17].

Finally, some authors proposed to use additional images
in their correction scheme. In [18–21], images of phantoms
were used as exact images of the bias field. An interesting
hybrid approach is proposed in [22] in the particular case of
surface coils. An additional body coil image is then used,
which is supposed homogeneous but with low signal inten-
sity. Compared to the previously mentioned methods, the lat-
ter ones rely on weaker assumptions on the object. However,
they all share the same simplistic model of bias, considered
as a smoothly varying, multiplicative component. As a con-
sequence, they neglect the dependence between the T1 of the
tissues and the RFP inhomogeneities.

In this paper, we introduce a method that makes no addi-
tional assumption on the morphology of the imaged object,
while the particular effect of the RFP inhomogeneities linked
to the T1 is taken into account. As a price to pay for gen-
erality, several images of the same object are needed1, for
different acquisition parameter values. Moreover the tissues
composing the object are supposed to be known.

The paper is organized as follows: In Section 2 we derive
the mathematical model behind our method. In Section 3 the
solution of the optimisation problem is detailed. Section 4
is dedicated to results obtained on real images acquired on
a low-field imager. They demonstrate the efficiency of the
method in the case of fish. Finally some perspectives are
proposed in Section 5.

2. PROBLEM FORMULATION

2.1 Signal model
2.1.1 Case of a one-tissue homogeneous object

In the simplified case of an homogeneous object containing
only one tissue and under hypotheses detailed in [23], the
noise-free spin-echo intensity s` at pixel ` = 1, . . . ,N can be
modeled by:

s` = R` O f (η`,α,β ,TR,T1)

with

f (η`,α,β ,TR,T1) =
1
2

sinη`α(1− cosη`β )(1−E1)
1−E1 cosη`α cosη`β

, (1)

where E1 = exp(−TR/T1). R = (R`) represents the recep-
tion coil sensitivity, η = (η`) the attenuation factor for the
nominal pulse angle, α the flip angle, β the angle of the refo-
cusing pulse, O the signal that corresponds to (R,η ,α,β ) =
(1,1,90◦,180◦), and T1 the longitudinal relaxation time of
the tissue.

This model shows the multiplicative effect of RFR inho-
mogeneities represented by R and also the link between T1
and the RFP inhomogeneities represented by η . The func-
tion f takes different values in function of T1 for non-zeros
values of E1. This is the case in T1-weighted images, where
TR is short compared to T1.

In order to cope with realistic situations, this model must
be extended to the case of objects that are made of several
components (or tissues).

1Additional images of phantoms composed of the relevant tissues are
also suited.

2.1.2 General case of an object composed of several tissues

Let us consider an object composed of Nt tissues (e.g., fat,
muscle, grey and white matter, ...), in the case of spin-echo
sequence where the additivity of the signals is valid. Then,
for each pixel, the noise-free signal can be modeled by:

s` = R`

Nt

∑
i=1

ki`Oi f (η`,α,β ,TR,T1i)

where ki` ∈ [0,1] is the proportion of tissue i in pixel `, Oi the
signal for ki` = 1 and (R`,η`,α,β ) = (1,1,90◦,180◦), and
T1i the longitudinal relaxation time of tissue i. Moreover, if
we consider that pixels are filled with tissues, i.e., if we ex-
clude the case of pixels partially containing air, the following
relation is verified :

Nt

∑
i=1

ki` = 1, ∀` = 1, . . . ,N. (2)

Our goal is to retrieve the signal s∗ that would be issued
from a perfect MR system, that is for (R,η) = (1,1):

s∗` =
Nt

∑
i=1

ki`Oi f (1,α,β ,TR,T1i).

(α,β ,TR) can be considered as known constants chosen by
the MR operator.

Since R and O = (Oi) are linked multiplicatively, all
couples (CR, O/C) (with C > 0) are equivalent from the
measurement viewpoint. To raise this undeterminacy, we
propose to assume that the quantities Oi are known, since
they can be measured during a calibration step. For exam-
ple, the intensity of regions containing only one tissue can
be measured manually once for all. We also rely on a suf-
ficiently good knowledge of T1i, since relaxation times can
be precisely measured using NMR experiments. Thus the
remaining unknown variables are R = (R`), η = (η`) and
k = (ki`), which amounts to Nt +2 images, i.e., (Nt +1)×N
scalar unknowns given constraint (2). In order to build re-
liable estimates, we propose to acquire Ns > Nt + 1 im-
ages s j = (s j`), using different values for the triple θ =
(α,β ,TR). Such a procedure necessarily increases the ac-
quisition time compared to the acquisition of a single image.
In this respect, it is interesting to use short TR, as the ac-
quisition time of one image is directly proportional to this
parameter.

2.2 Cost function definition
Noise in MR magnitude images is governed by a Rician dis-
tribution [24]. However for signal to noise ratio greater than
3, which is the case in most applications, it can be consid-
ered as white Gaussian. Thus we propose to estimate R, k
and η by joint minimization of a penalized least-square cost
function:

(R̂, k̂, η̂) = arg min
R,k,η

J(R,k,η) s.t.
Nt

∑
i=1

ki` = 1, (3)

where

J(R,k,η) =
Ns

∑
j=1

λ j

N

∑
`=1

(
s j`−R`

Nt

∑
i=1

Oiki` f (η`,θ j,T1i)
)2

+δ ‖DR‖2 + γ ‖Dη‖2 . (4)
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Parameters λ j, δ and γ are positive weights and D represents
a finite difference operator. The first term in (4) accounts
for data fidelity. The second and third terms ensure that R̂
and η̂ are reasonably smooth, given the antennae configura-
tion [25].

3. SOLUTION OF THE OPTIMIZATION PROBLEM

Let R′ = (R′
`) with R′

i` = Riki`, so that R and k can be re-
trieved from R′ given (2) according to:

R` =
Nt

∑
i=1

R′
i`, ki` =

R′
i`

R`
.

It is easy to check that the minimization problem (3)-(4) takes
the following simpler form in terms of (R′,η): (R̂′, η̂) =
argminR′,η J′(R′,η), where

J′(R′,η) =
Ns

∑
j=1

λ j

N

∑
`=1

(
s j`−

Nt

∑
i=1

OiR′
i` f (η`,θ j,T1i)

)2

+δ

∥∥∥∥D Nt

∑
i=1

R′
i

∥∥∥∥2

+ γ ‖Dη‖2 , (5)

with R′
i = (R′

i`, ` = 1, . . . ,N). In particular, the new formu-
lation is no more constrained. Moreover, (5) is a quadratic
function of R′.

We propose to resort to a coordinate descent approach to
compute R̂′ and η̂ :
1. While η is held at its current value, a fixed number of it-

erations of a conjugate gradient algorithm are performed
to minimize J′ as a function of R′.

2. While R′ is held at its current value, a fixed number of it-
erations of a conjugate gradient algorithm are performed
to minimize J′ as a function of η .

Steps 1 and 2 are performed repeatedly, until the norm of the
gradient of J′ with respect to (R′,η) becomes sufficiently
small, i.e., ‖∇J′(R′,η)‖ 6 ε . Although the two steps look
very similar, the second one is practically more complex
since (1) is a nonlinear, multimodal function of η . As a
consequence, J′ may possess local minima. In practice, it
is hoped that proper initialisation of η allows to converge
towards the global minimum. The expected values vary ap-
proximatively between 0.6 and 1.3, and it is reasonable to
take η = 1 as initial point. Remark that the initial value of
R′ can remain arbitrary, provided that the first instance of
Step 1 is performed until practical convergence.

According to the probabilistic interpretation of criterion
J′, λ j corresponds to the inverse of the noise variance for
the jth image. The noise variances can be estimated directly
from the images using the method proposed in [26]. The
remaining parameters δ and γ are chosen empirically at the
present stage of our work.

4. RESULTS

4.1 Image acquisition
We used a trout to test our algorithm, with a view to an ap-
plication to food science. Fish is a convenient model as it
is made of two tissues, fat and muscle, with approximatively
known T1. We used Ns = Nt +1 = 3 different images.

• s1 was acquired on the trout with (α,β ,TR) =
(90◦,180◦,140 ms). Such parameter values produce
T1weighted images since the TR value is short enough
regarding the T1 values of fat and muscle. These values
were evaluated by NMR measurements as 100 ms and
500 ms, respectively. Five different images s1

1, . . . ,s
5
1 of

the same slice of the fish were actually acquired after a
translation of 22.5 mm between each acquisition, along
the z axis (i.e., perpendicularly to the slice plane).

• s2 (respectively, s3) was acquired on a cylinder filled
with oil, with (α,β ,TR) = (60◦,180◦,700 ms) (resp.,
(α,β ,TR) = (120◦,180◦,700 ms)).

The MRI system was a 0.2 T imager (Open, Siemens). The
fish was kept refrigerated at 5◦C to avoid signal variations
due to temperature. The field of view was 200 mm× 200 mm
and the matrix size was N = 256×256. The slice thickness
was 4 mm for s1 and 10 mm for s2 and s3. The quantities
Oi were measured on s1 : a region filled with fat was man-
ually defined where the mean intensity was computed. For
the muscle signal, a region physiologically known as very
low-fat (less than 1%) was chosen as reference.

4.2 Parameter algorithm
No prior information was assumed on the values of R, η and
k. We stopped the coordinate descent when ‖∇J′(R′,η)‖
became lower than ε = 3N × 10−4. We run each conjugate
gradient with a fixed number of iterations equal to 5. In
order to increase the convergence speed, we used an over-
relaxation factor of 1.8 for Step 1. The values of λ j were cho-
sen equal to one, since the three images were about equally
noisy. The values of δ and γ were chosen empirically as 107.

4.3 Image results
The top row of Figure 1 shows the five images s1

1, . . . ,s
5
1 of

the same slice of the trout, acquired at different positions in
the MR system. The bottom row displays the corresponding
corrected images. The highest gray levels correspond to fat

Figure 1: Top row: Original images acquired from left to
right at −45 mm, −22.5 mm, 0 mm, 22.5 mm and 45 mm
from the centre of the MR system, respectively. Bottom row:
corrected images

tissues and the lowest to muscle. Due to the trout physiol-
ogy and to the relative thickness of the slices, many pixels
contain both fat and muscle. Let us remark here that such a
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configuration is definitively not suited to segmentation based
approaches.

We can clearly see the effects of the RF inhomogeneities
on the original images. The two extreme images exhibit
lower signals, while all corrected images exhibit a similar
range of grey levels. Histograms of signal intensity are pre-
sented in Figure 2 for the raw images and in Figure 3 for
the corrected images. The histograms of the raw images
significantly differ one from each other due to the inhomo-
geneities, while they are very much alike for the corrected
images. As expected, each image exhibits a narrower his-
togram once corrected.

Figure 2: Histograms of signal intensity for the five original
images

Figure 3: Histograms of signal intensity for the five corrected
images

Figure 4 shows the same five images after only partial
correction: only R′ was estimated and compensated for,
while η and f were assumed equal to one. This configura-
tion is equivalent to the modeling of the inhomogeneities by a
multiplicative bias field. The result shows that it is not suffi-
cient to estimate the multiplicative bias R only, especially in
the zones that contain more muscle. This is particulalry true
for the images at −45 mm and −22.5 mm, where low values
of η were found. Indeed, the effect of the inhomogeneities
of η has a greater influence on the tissue with large T1 com-
pared to TR. It is the case of fish muscle, with T1 = 500 ms
to be compared with TR = 140 ms. Figure 5 shows the cor-

responding histograms, which confirms the visual inspection
of Figure 4.

Figure 4: Images corrected without the estimation of η

Figure 5: Histograms of signal intensity for the five images
corrected without the estimation of η

5. CONCLUSION

We have proposed a correction method for inhomogeneities
of RF pulses and RF reception in MR systems. This method
is based on the modeling of the signal as a sum of contribu-
tions of different tissues, in order to account for the fact that
different tissues yield different responses regarding the RF
pulse values, particularly in the case of T1-weighted images.

Our method makes no assumption of piecewise constant
regions in the image, which we find too restrictive an as-
sumption. It is rather based on the processing of several
images, acquired at different measurement parameter values.
The resulting estimation problem pertains to partially nonlin-
ear source separation.

A penalized least-squares criterion was defined to bal-
ance a data fidelity term and regularization terms for the RF
pulses and reception maps. The resulting method proved to
be efficient on a fish slice with a two-tissue model, using a
set of three images, two of which being acquired on an oil
phantom.

In order to improve the method and to enlarge the poten-
tial applications, several points remain to be explored. First,
the acquisition time is a key point in MRI. Our method needs
at least Nt + 1 images in the case of an object made of Nt
tissues. The use of images acquired on phantoms once for
all does not penalize the acquisition time. However, such
images do not account for inhomogeneities due to patient-
specific geometrical and electrical properties. Although such
a mismatch is of minor effect in low-field imaging, it would
be preferable to limit the resort to phantoms, for the sake of
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generality. If more images are to be acquired on the object,
shorter acquisition times should be used. This could be done
with shorter TR or with fast spin-echo sequences to get addi-
tional, less accurate images. As our approach is regularized,
one can hope that a certain level of degradation in the data
will be of limited consequence on the quality of the results.
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