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ABSTRACT 
In this paper, the problem of particle filter to demodulate 
uncoded M-PSK and M-QAM signals over Rayleigh flat fad-
ing channels is investigated. Based on the Jakes’ model, the 
channel state is modelled as a first order autoregressive (AR) 
process. The observation noise is assumed complex Gaussian. 
It is shown that, in the demodulation of uncoded PSK signals, 
particle filter doesn’t have superiority compared to the deci-
sion-directed Kalman filter due to the M-ary phase ambiguity 
of the PSK signals， but it is not the case to detect uncoded 
QAM signals. As can be seen, while using the same pilot 
symbol rate in the demodulation of uncoded M-QAM signals 
particle filter outperforms the decision-directed Kalman filter 
and it performs well even in the low pilot symbol rate. 
 

1. INTRODUCATION 

In recent years, much attention has been devoted to a group 
of techniques known as particle filtering methods (also re-
ferred as sequential Monte Carlo (SMC) algorithms) [1]. All 
of these techniques are aimed at building a recursive Bayes-
ian filter, which estimates the posterior probability density 
function (pdf) based on Monte Carlo simulations. Particle 
filter is an important alternative for predicting and estimation 
unknown parameters of interest in real-time applications, 
especially in systems with nonlinearities and non-
Gaussianties where classical approaches based on the well-
known Kalman filter [2] provide solutions that may be far 
from optimal.  

Specifically, a main stream of research in the application 
of particle filtering to communications is currently under way. 
A considerable amount of research has recently been devoted 
to PSK signal detection using particle filter in frequency-
nonselective (flat) Rayleigh fading channels [3, 8]. The basic 
idea is to make use of the structure of the state space model, 
and incorporate efficient variance reduction strategies, so that 
we can sequential impute multiple samples of the transmitted 
symbols based on the current observation, and obtain the 
MMAP (marginal maximum a posteriori) estimates of the 
transmitted symbols. This kind of particle fitler has been 
called Mixture Kalman filter [3] or particle filter with Rao-
Blackwellistion variance reduction strategies [8].  

 This article may be the supplement to [3], as we pointed 
out that particle filtering doesn’t have superiority compared 
to decision-directed Kalman filter in the demodulation of  
uncoded PSK signals due to the phase ambiguity, but it is not 
the case to detect uncoded QAM signals and coded PSK sig-
nals. In the demodulation of QAM signals, particle filter out-
performs the decision-directed Kalman filter while using the 
same pilot symbol rate and it performs well even in the low 
pilot symbol rate. We don't consider the coded PSK signals 
here. 

The rest of the paper is organized as follow. In section 2 
the communication system under study is described. In sec-
tion 3 we introduce particle filter and decision-directed Kal-
man filter for this communication system. Simulation results 
and our analysis are provided in section 4. A brief summary 
is given in section 5.  

2. SYSTEM DISCRIPTION 

Consider a sequence of uncoded M-PSK or M-QAM sym-
bols transmitted through a Rayleigh flat fading channel with 
additive Gaussian noise. The symbol transmitted during the 

th signaling interval is , for . Assuming sym-
boling rate sampling, the received signal sample in the t th 
signaling interval is  

t ts 1,t = T

tt t ty s c n= ⋅ +      2(0, )t cn N σ∼                        (1) 
Where and are complex, zero mean Gaussian random 
variable representing the sampled fading and the additive 
noise processes. Among various channel models, the infor-
mation theoretic results in [7] have shown that the first-order 
Gaussian-Markov process provides an accurate model for 
Rayleigh flat fading channels and therefore, will be adopted 
henceforth. The dynamic of the channel state are modeled 
by  

tc tn

tc

1t tc c tα ν−= ⋅ +                                                   (2) 
Where the tν is the white complex Gaussian with zero-mean 
and covariance  per dimension and is statistically in-
dependent o tc , Paramete

2 / 2vσ
f r α is the fading correlation coef-

ficient that characterizes the degree of time variations, de-
pends on the channel Doppler spread and can be accurately 
obtained in [7]. 
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3. ALGORTHIM 

3.1 Particle Filter 
Consider the flat-fading channel with additive observation 
Gaussian noise model, given by (1) and (2). Denote 

and .We considers the case of 
uncoded system, where the transmitted symbols are assumed 
to be independent from a finite alphabet set 
A ={

0( )t tY y y 0( , )tS s s= t

}1, Ma a . After received ( )1: 1 2t ty y y y , our 
aim is to recursively estimate the posterior probability den-
sity function . In fact the joint posterior density 1: 1: 1:( , | )t t tp c s y

1: 1: 1:( , | )t t tp c s y can be factorized 

as . Given , 
the probability density is a Gaussian distribu-
tion whose parameters may be computed using the Kalman 
filter. It is possible to reduce the problem of estimating 

 to one of sampling from a lower-dimensional 
distribution , which intuitively requires a reduced 
number of samples N in order to reach a given precision. 
This is proved in [5] where it is shown that the variance of 
the estimates is lower when can be integrated out analyti-
cally. The detail description of above idea can be found in [3, 
8]. 

1: 1: 1: 1: 1: 1: 1: 1:( , | ) ( | , ) ( | )t t t t t t t tp c s y p c y s p s y= 1:ts
1: 1: 1:( | ,t t tp c y s )

)

1: 1: 1:( , | )t t tp c s y

1: 1:( | )t tp s y

1:tc

 The brief algorithm is as follow: 
1) Initialization: Each Kalman filter is initialized 

as ( ) ( ) ( )
0 0 0( ,j j jκ μ= Σ , with ( )

0 0jμ = , ,( )
0 2jΣ = Σ 1,j N= , 

whereΣ  is the stationary covariance of tx and is com-
puted analytically from (1)(The factor 2 is to accommo-
date the initial uncertainty). All importance weights are 
initialized as ,( )

0 1jω = 1,j N=  
      Based on the state-space model (1), (2), the following 

steps are implemented at time  to update each weighted 
sample. For

t
1,j N= . 

2) Compute the one-step predictive update of each Kalman 
filter 
                        ( ) ( ) 2

1 'j j
t tK a vα σ−= ⋅∑ ⋅ +  

                       ( ) ( ) 2j j
t tKγ σ= +  

3) Compute the trial sampling density: For each 
A compute ia ∈

( )
, 1( | ,j j

t i t i t tP s a S Yρ −= )  

                 ( )
1 1( , , , )j

t t t i tp y Y s a S− −∝ =  

                  ( ) ( )
1 1 1 1( | , , ) ( | , )j

t t i t t t i t tp y s a S Y p s a S Y− − − −= = =i j

                  ( )
1 1( | , , ) ( )j

t t i t t t ip y s a S Y p s a− −= = =i
Furthermore, we observe that 

( ) ( ) ( )
1 1 1( | , , ) ( , )j j j

t t i t t c i t tp y s a S Y N a μ γ− − −= ∼  

4) Impute the symbol : Draw ts ( )j
ts from the set with prob-

ability 
( ) ( )

,( )j j
t i t iP s a ,ρ= ∝    

Append ( )j
ts  to  and obtain( )

1
j

tS −
( )j
tS . 

5) Compute the importance weight: 
( ) ( ) ( )

1 1( | , )j j j
t t t t tw w p y S Y− −= ⋅ 1−

a
 

                    ( ) ( )
1 1 1( | , , ) ( )j j

t t t i t t t iw p y s a S Y p s− − −= ⋅ = =∑  
                    ( ) ( )

1 ,
j j

t tw iρ−∝ ⋅∑  
6) Compute the one-step filtering update of the Kalman filter: 

Based on the imputed symbol ( )j
ts and the observa-

tion ty , complete the Kalman filter update to ob-

tain ( )j
tμ , ( )j

tΣ , as follows: 
( ) ( )

( ) ( ) ( ) ( )
1 1( ) ( )

j j H
j j jt t

t t t tj
t

K s y sμ α μ α μ
γ− −

⋅
= ⋅ + − ⋅ ⋅ j

t
 

( ) ( ) ( ) ( ) ( ) ( )
( )

1j j j j H j
t t t t t tj

t

jK K s s K
γ

Σ = − ⋅ ⋅ ⋅  

Moreover, the a posterior symbol probability can be esti-
mated as 
                           ( |t i t )P s a Y=  
                               { }1( ) |t i tE s a Y= =  

                               ( ) ( )

1
1( )

N
j j

t i t
j

s a w
=

≅ =∑ , i=1… M. 

Note a hard decision on the symbol ts is obtained by max the 
a posterior probability.   

It is easy to see that the channel state and the user data 

are all unknown and needed to be estimated. It is well 
known that M-PSK signals have phase ambiguity, so there 
may be multiple pairs of ( ,  ) which are equally likely 
solution for an observation.  For the proposed particle filter-
ing above which has multiple samples of the transmitted 
symbols based on the current observation, it is hard for us to 
distinguish these multiple samples using different weights. 
There will be more detail explanation in the section 4.   

tc

ts

tc ts

The way to avoid the situation may be to use error cor-
recting coding such as convolutional coding or trellis coding 
which will produce not i.i.d. symbols. There are some simu-
lation results in [3]. 

 
3.2 Decision-Directed Kalman Filter 
The state space model of (1) and (2) allow us to use Kalman 
filter to adaptively track the channel gain . Noted that the 

algorithm needs the information symbol , so is working in 
the decision-directed mode. That is just to use the decision 
symbols replace the information symbol. The algorithm is 
standard and is given below. 

tc

ts

1) Initialization: Kalman filter is initialized as
0 0( , )κ μ 0= Σ , 

with
0 0μ = , 

0Σ = ΣwhereΣ  is the stationary covariance of 

tx and is computed analytically from (1).  
2) Compute the one-step predictive update of each Kalman 
filter: 
                           2

1
H

t tK vα α σ−= ⋅∑ ⋅ +  
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 Figure 1 – Real channel and Particle filtering track trajectory for 
every particle. 

 
2

t tKγ σ= +  

4) Compute the one-step filtering update of the Kalman filter :  

1 1( )
H

t t
t t t t

t

K s y s tμ α μ α μ
γ− −

⋅
= ⋅ + − ⋅ ⋅  

1 H
t t t t t

t
tK K s s K

γ
Σ = − ⋅ ⋅ ⋅ . 

4. SIMULATION 

In this section, we provide computer simulation examples to 
demonstrate the performance of the proposed particle filter 
and decision-directed Kalman filter for uncoded PSK and 
QAM signal detection in flat fading channels. The normal-
ised Doppler frequency is 0.05, which is a fast fading sce-
nario.  In order to avoid the degeneracy we send one pilot 
symbol every P symbols.  

In the first simulation we detect the 8PSK signals. As can 
be seen that the bit error is less dependent different levels of 
signal to noise and much more dependent on whether a fade 
occurs (the phase of the channel may be lost during a fade) 
and how fast one may recover from it.  Because of the phase 
ambiguity，even particle filter has multiple samples of the 
transmitted symbols based on the current observation， it 
only has the same ability to recover from a deep fade as deci-
sion-directed Kalman filter. That is because due to the differ-
ent multiple samples ( )

1
j

ts − , the estimated channel of these 
samples ( )

1
j

tμ −
recover from a different phase (i.e. the opposite 

sign of the channel for BPSK for example, see figure 1), 
these different ( )

1
j

tμ −
 which almost only have different phase 

get almost the same likehood during the 

next observation. So the weights 

( )
1 1( | , )j

t t tp y S Y− −

( )j
tw of the particle which 

have correct decision ( )
1
j

ts −  may be not large enough to let 
particle filter have correct decision during a fade.  

As one can see in figure 2, there is no appreciable differ-
ence in the BER performance between particle filter  

 
Figure 2 – The comparison of Particle filtering and decision-directed 
Kalman filter in the demodulation of uncoded 8-PSK using the same 
pilot symbol rate.  

 

 
Figure 3 – The comparison of Particle filtering and decision-directed 
Kalman filter in the demodulation of uncoded 8-QAM signals using 
the same pilot symbol rate. 
 
and the decision-directed Kalman filter; there is also no dif-
ference if we have more particles. 

In the next simulation we detect the 8QAM signals. There 
is no phase ambiguity to QAM signals, so the multiple sam-
ples of the transmitted symbols based on the current observa-
tion let particle filter have the ability to recover from a deep 
fade. The proposed algorithm performs well, and it outper-
forms the decision-directed Kalman filter.   

Figure 3 illustrates the BER performance of particle filter 
(the number of particle N = 50) and decision-directed Kal-
man filter with the same pilot symbol rate (P = 20). Figure 4 
illustrates the BER performance of particle filter for P = 20 
and decision-directed kalman filter for P = 10. 

We must recommend that the complexity of the proposed 
particle filter is much bigger than the decision-directed Kal-
man filter. M-detector or stochastic M-detector can be incor-
porated to decrease the complexity [9].  

5. CONCLUTION 

In this article we compare the performance of particle filter-
ing and decision-directed Kalman filter in the demodulation  
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Figure 4 – The comparison of Particle filtering and decision-directed 
Kalman filter in the demodulation of uncoded 8-QAM signals using 
the different  pilot symbol rate, P = 20 for particle filtering and P = 
10 for decision-directed Kalman filter. 
 
of uncoded M-PSK and M-QAM signals. As can be seen the 
phase ambiguity is a major obstacle of particle filtering in the 
demodulation of uncoded M-PSK signals transmitted 
through the Rayleigh flat-fading channels. We can avoid the 
phase ambiguity in the demodulation of M-QAM signals or 
may avoid the phase ambiguity in the demodulation of coded 
M-PSK signals (it can be seen in [3]). The complexity of the 
proposed particle filter and future modified methods are also 
recommended. 
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