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ABSTRACT
The Network of Kalman Filters structure was proposed, re-
cently, to perform an optimal Bayesian symbol-by-symbol
estimation in the multiuser detection context. By approxi-
mating the prediction error covariance matrix on each branch
by a constant diagonal one, we show in this paper that the
NKF structure can be expressed into a particular Network of
normalized LMS filters exhibiting less computational com-
plexity. The choice of the value of the step-size is also dis-
cussed. In order to overcome its heuristic choice, we, here,
propose a new adaptive step size based on the second order
moment of the estimated symbols. The form of the step-
size still contains an information on the a priori state esti-
mation. The performance of the resulted receiver structure
is evaluated by means of computer simulations for very high
asynchronous system load, in multipath fading channel, and
compared to MAP, NKF, MMSE and Rake receivers.

1. INTRODUCTION

One of the main drawbacks of the Code Division Multiple
Access communication systems can be identified in their vul-
nerability to multiple access interference (MAP). In addition,
the existence of dispersive effects of the channel, such as
multipath, destroys the orthogonality of the spreading codes
in CDMA systems leading to the inter-symbols interference
(ISI). As a result, the conventional RAKE receiver reaches
a noise floor at a high frame error rate [1]. Hence, during
the 90s, great attention has been devoted to multiuser detec-
tion strategies which exploit the interference as an additional
information source. These strategies can be divided into se-
quence detection and single symbol detection under a con-
strained and an unconstrained alphabet. These receivers op-
timize a Maximum A Posteriori criterion, a Maximum Like-
lihood criterion or a Minimum Mean Square Error criterion.
These approaches depend on the input-output modelling of
the channel.
In recent years, with the advent of powerful computers, much
attention has been given to Bayesian multiuser detectors.
From Bayesian point of view, all the information that can
be extracted form data about signal unknowns is contained
in the a posteriori distribution of the unknowns. The analyt-
ical computation of the a posteriori distribution is infeasible
due to its prohibitively high computational complexity.
Recently, in [2], the multiuser detection problem is viewed
as a Bayesian estimation of the transmitted symbol based on
the following symbol-level state-space model:

r(k) = A(k)d(k)+b(k)

where A(k) is the measurement matrix containing both the

spreading codes and the channel coefficients, d(k) is a k̃K
vector containing k̃K symbols contributing to r(k) and b(k)
is an additive white Gaussian vector. k̃ denotes the number
of interfering symbols.
The conditional probability density function (pdf),
p(d(k)|Rk), where Rk = [r(k),r(k−1), ...,r(0)] , is
needed to derive the optimal Maximum A Posteriori or
MMSE detection. In the case of the MMSE, the solution
is delivered recursively via the Kalman filter approach.
In fact, it is known that the Kalman filter is an optimal
linear estimation method in the mean squared error (MSE)
sense. However, in [2, 3], it is shown that the optimality
of the Kalman filter in no longer valid because of the
non-gaussianity of the state noise.
By approximating the a posteriori pdf by a weighted sum
of Gaussian density functions, it is shown in [2, 3] that the
infinite horizon a posteriori symbol state pdf is propagated
through the non-Gaussian state-model resulting in a MMSE
state estimate which is a linear combination of the outputs of
parallel Kalman filters. The resulting algorithm is computa-
tionally intensive, and requires matrix inversion.
In order to reduce the corresponding complexity and having
a comparable performance, we propose in this paper to con-
straint each filtering error covariance matrix on each branch
of the network to a diagonal matrix. The resulting structure is
a network of Normalized LMS Filters (NLMSF). This struc-
ture is justified since the covariance matrix update is no fur-
ther needed if we suppose that the last derived MMSE state
estimate is consistent.
It is known that the convergence and the steady behavior of
the NLMS algorithm is step size value dependent [4]. There-
fore, we discuss in the second part of this paper the choice of
the step size. We here propose a variable step-size such that
it still includes an information about the a priori state esti-
mation error. The simulations results show the better perfor-
mance of the variable step-size NLMSF structure compared
to the fixed value step-size NLMSF structure.
The next section presents the symbol-level state-space model
for the multiuser CDMA system. Section 3 presents the Net-
work of Kalman Filters (NKF) detector structure. Section 4
presents the new resulting structure based on a network of
NLMS filters. Section 5 presents the new variable step-size
of the normalized LMS algorithm. Section 6 gives some sim-
ulation results. Finally, section 7 draws our conclusion.

2. SYMBOL RATE STATE-SPACE MODEL

We consider K asynchronous users transmitting over K dif-
ferent frequency selective channels. We denote by di(m)
the symbol of the i−th user transmitted in the time interval

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



[mTs,(m + 1)Ts[ where Ts represents the symbol period. We
introduce ci = [c0

i , . . . ,c
L−1
i ]T as the spreading code of user

i. L is the processing gain. So, the transmitted signal due
to the i-th user can be written as si(t) = ∑n di(n)ci(t− nTs),
where ci(t) = ∑L−1

q=0 cq
i ψ(t− qTc) and 1/Tc denotes the chip

rate. ψ(t) is a normalized chip waveform of duration Tc. The
baseband received signal containing the contribution of all
the users over the frequency selective channels denoted by
h(i)(t), i = 1, ...,K, is given by:

r(t) =
K

∑
i=1

∑
n

L−1

∑
q=0

di(n)cq
i h(i)(t−qTc−nTs)+b(t) (1)

where b(t) is an additive noise and h(i)(t) = h̃(i)?ψ(t) includ-
ing the equipment filtering (chip pulse waveform, transmitted
filter and its matched filter in the receiver) and propagation
effects (multipath, time delay).
The baseband received signal sampled at the chip rate 1/Tc
leads to a chip-rate discrete-time model which can be written
in [kTc,(k +1)Tc[ as,

r(k) = r(t = kTc) =
K

∑
i=1

∑
j

g̃i(k,k− jL)di( j)+b(k) (2)

where g̃i(k, l) = ∑L−1
q=0 cq

i h(i)(k,(l−q)Tc), is the global chan-
nel function including spreading and convolution by the
channel. It is convenient to combine the signature modula-
tion process with the effects of the channel in order to obtain
an equivalent model in which the symbol’streams of the indi-
vidual users are time-division multiplexed before their trans-
mission over a multiuser channel.
By concatenating the elements of r(k) in a vector r(k), and
according to equation (2), we have,

r(k) = [r(kL), . . . ,r(kL+L−1)]T (3)

= ∑
p

B(k, p)x(k− p)+b(k) (4)

where the matrix B(k, p) is of size (L,K) and is obtained as
follows:

B(k, p) = [g1(k, p), . . . ,gK(k, p)]

gi(k, p) = [g̃i(k,PL), . . . , g̃i(k, pL+L−1)]T , i = 1, . . . ,K

x(k) = [d1(k), . . . ,dK(k)]T is a vector of size (K,1) contain-
ing the symbols of K users and b(k) = [b(nL), . . . ,b(nL+L−
1)]T is a vector of size (L,1) containing the noise samples on
a symbol period.
By denoting k̃ = dP+L−1

L e, where P represents the maximum
delay introduced by the multipath channels, as the number
of the symbols interfering in the transmission channel, the
received signal can be expressed as a block transmission
CDMA model,

r(k) = A(k)L×k̃Kd(k)k̃K×1 +b(k)L×1 (5)

A(k) = [B(k,0), . . . ,B(k, k̃−1)]

d(k) = [x(k)T , . . . ,x(k− k̃ +1)T ]T

Matrix A(k) is of size (L, k̃K). We note that in the case of a
time-invariant channel case, the observation matrix A(k) is a
constant matrix A.
Equation (5) represents the measurement equation required
in the state-space model of the DS-CDMA system. d(k) rep-
resents the (k̃K× 1) state vector containing all the symbols
contributing to r(k). The state vector d(k) is time dependent
and its first order transition equation is described as follows:

d(k +1) = Fd(k)+Gx(k +1) (6)

where:

F =




0K×K 0K×K . . . . . . 0K×K

IK×K 0K×K
. . . . . .

...

0K×K
. . . . . . . . .

...
...

. . . . . . . . . 0K×K
0K×K · · · · · · IK×K 0K×K




k̃K×k̃K

G =




IK×K
0K×K

...
0K×K




k̃K×K

0 is the (K×K) null matrix and I is the (K×K) identity ma-
trix. We assume that the users are uncorrelated and transmit
white symbol streams, i.e. E

[
x(k)x( j)T

]
= σ2

d IK×Kδ (k− j)
where δ (.) denotes the Kronecker symbol and σ2

d denotes
the symbol variance. This state formulation corresponds to
a linear system (linear transition and observation equation)
corrupted with a Gaussian additive observation noise.

3. NETWORK OF KALMAN FILTERS BASED
MULTIUSER DETECTOR

3.1 Non-Gaussian state noise problem
The Kalman filter derivation makes use of the Gaussian hy-
pothesis of the observation noise b(k) and the state noise
Gx(k) [5]. This is not valid in our case for the plant noise
(Gx(k)) which is by definition formed by a set of a discrete
transmitted symbols. So, the a posteriori pdf, p(d(k)|Rk),
can be considered as a multiomodal pdf (a set of impulses
centered on the possible states). The Kalman filter approxi-
mates the first and the second order of the exact pdf [5]. The
Kalman filter ignores the binary character of the state noise
and loses its optimality.

3.2 The symbol-by-symbol NKF multiuser detector al-
gorithm
In order to enhance the Kalman solution optimality, the a
posteriori pdf p(d(k)|Rk) is approximated by a Weighted
Sum of Gaussian terms (see reference [6]), where Rk =
[r(k),r(k−1), ...,r(0)]. Using the Bayesian filtering equa-
tion, it is shown in [2, 3] that the WSG pdf approximation
can be propagated through the Bayesian filtering equations,

p(d(k)|Rk) = θk p(d(k)|Rk−1)p(r(k)|d(k)) (7)

p(d(k)|Rk−1) =
∫

p(d(k)|d(k−1))

p(d(k−1)|Rk−1)dd(k−1) (8)
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where the normalizing constant θk is given by

1
θk

=
∫

p(r(k)|d(k))p(d(k)|Rk−1)dd(k)

The densities p(r(k)|d(k)) and p(d(k)|d(k− 1)) are deter-
mined from (5) and (6) and the a priori distributions of d(k)
and b(k).
We can show, see reference [2], that if at iteration (k−1), we
approximate the pdf p(d(k−1)|Rk−1) by a WSG as follows:

∑ξ (k−1)
i=1 αi(n)N (d(k−1)−di(k−1|k−1),Pi(k−1|k−1)),

where d(k|l) and P(k|l) denotes the state vector estimate and
the corresponding error covariance matrix, respectively, at
time k assuming the knowledge of all the observations col-
lected up to time l (i.e.Rl), the predicted pdf p(d(k)|Rk−1)
can be written as a WSG using the equation (8) and the
approximation of the plant noise as follows: p(d(k)|d(k−
1)) = p(Gx(k)) = ∑2K

q=1 pqN (Gx(k)−Gxq,∆q) 1 where
xq is a possible value of x(k) and where pq = 1

2K (BPSK
symbols are i.i.d) and ∆q = ε0IL×L(ε0 ¿ 1).
Using the equation (7), the estimated pdf p(d(k)|Rk) can
be written, also, as a WSG with a number of terms equal to
ξ (k) = 2K .ξ (k− 1). Each Gaussian parameters (mean and
covariance matrix) in the expression of the predicted pdf
p(d(k)|Rk−1) is updated by a Kalman filter. In order to
stabilize the number of terms in the WSG, we reinject the
MMSE estimate, E(d(k)|Rk), which is assumed to be Gaus-
sian: N (d̂MMSE(k),P(k)), .i.e. we force ξ (k) to 1. The ob-
tained MMSE estimate is a convex combination of the out-
puts of all the Kalman filters. The obtained NKF used for
optimal symbol by symbol estimation is given by the follow-
ing algorithm:
Prediction step: p(d(k)|Rk−1) computation

di(k|k−1) = Fd̂MMSE(k−1)+Gxi (9)
ei(k|k−1) = r(k)−Adi(k|k−1) (10)

Pi(k|k−1) = FP(k−1)FT +∆i (11)

Filtering step: p(d(k)|Rk) computation

di(k|k) = di(k|k−1)+Ki(k)ei(k|k−1) (12)

Pi(k|k) =
(
Ik̃K×k̃K −Ki(k)A

)
Pi(k|k−1) (13)

Ki(k) =
Pi(k|k−1)AT

σ2IL×L +APi(k|k−1)AT (14)

MMSE state estimation

βi(k) = N (ei(k|k−1),σ2IL×L +APi(k|k−1)AT )

αi(k) =
βi(k)

∑2K
q=1 βq(k)

(15)

d̂MMSE(k) =
2K

∑
i=1

αi(k)di(k|k) (16)

P(k) =
2K

∑
i=1

αi,q(Pi(k|k)+
(
di(k|k)− d̂MMSE(k)

)(
di(k|k)− d̂MMSE(k)

)T
)

1N (a,B) = exp{− 1
2 a

T B−1a}/(2π)n/2|B|1/2 where a is a random
vector with a covariance matrix B.

The NKF detector presents a computational complexity
about (O(2K(K2k̃2 + 3K2k̃ + Kk̃) + K3)) which is less than
the complexity of the MAP detector, O(2k̃K), for k̃ >= 2.

4. THE NETWORK OF NORMALIZED LMS
FILTERS STRUCTURE

In order to reduce the complexity of the NKF multiuser
detector, which rises from the joint decoding of all the K
users, we propose to approximate the prediction error co-
variance matrix on each branch, Pi(k|k − 1), by a con-
stant diagonal one. This is equivalent to use a stochastic
steepest-descent minimization of the mean square error func-
tion E[|r(k)−Ad̂i(k)|]2 by assuming the knowledge of the
spreading codes and the channels of all users.
Thus, the NKF algorithm can be rewritten by approximating
the prediction error covariance matrices Pi(k + 1|k) with a
scaled version of the identity matrix, as follows, where η is
a positive constant,

Pi(k|k−1) = ηIk̃K , for i = 1..2K

The matrices ∆i=1..2K are set to the null matrices. In
this manner, we reduce the complexity of NKF multiuser
detector about O(2K(k̃K)2).

In the next, we adopt a slightly different notation for clar-
ity. The predicted estimates {di(k|k− 1)} are replaced by

d̂i(k) and the filtered estimates {di(k|k)} become ̂̂di(k). The
NKF algorithm reduces to the following where σ2

b denotes
the spectral density of the observation noise,
A priori update

d̂i(k) = Fd̂NLMS(k−1)+Gxi (17)

ei(k) = r(k)−A(k)d̂i(k) (18)

Γi(k) = ηA(k)A(k)T +σ 2
b IL×L (19)

A posteriori update

̂̂di(k) = d̂i(k)+η
A(k)T

Γi(k)
ei(k) (20)

MMSE Estimation

βi(k) = N (ei(k),Γi(k)) (21)

αi(k) =
βi(k)

∑2K
j=1β j(k)

(22)

d̂LMS(k) =
2K

∑
i=1

αi(k)d̂i(k) (23)

The filter outputs, A(k)d̂i(k), are compared to the received
sample r(k) to generate a set of innovations or error signals,
ei(k) = r(k)−A(k)d̂i(k) = r(k)− r̂(k), i = 1..2K . The inno-
vation covariance matrix becomes Γi(k), given by equation
(19). The measurement update is reduced to equation (20).
In fact, equation (20) is an update of a normalized LMS filter
minimizing the MSE of the predicted output assuming that
x(k) =xi has been transmitted. The parameter η is identified
as the step size in [7], where its value is chosen fixed.
In the sequel, and in order to overcome the problem of the
choice of the parameter η , we build an adaptive step-size
value denoted by η(k).
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5. PROPOSED ADAPTIVE STEP-SIZE: η(K)

The convergence and the steady behavior of the NLMS al-
gorithm is step size value dependent [4]. Here, we choose
the value of the step size, η(k), such that it still includes an
information about the a priori state estimation error.
The matrices ∆i=1..2K are set to the null matrices. Therefore,
from the equation (11), we can write:

Tr(P̂i(k|k−1)) =
(k̃−1)K

∑
j=1

P(k−1)[ j, j] = (k̃−1)Kη(k)

(24)
where Tr denoted the trace operator. P̂(k − 1)[ j, j] 2=
E{(d(k − j)− d̂(k − j|k − 1))2|Rk−1}, for j = 1, . . . , k̃K.
Thus, we can choose the value of η at iteration k as follows:

η(k)' 1

(k̃−1)K

(k̃−1)K

∑
j=1

(d(k− j)− d̂(k− j|k−1))2 (25)

where d(k− j) is replaced by the hard estimation of d(k−
j|k−1)) [3, 8].
The value of η(k) is valid for k̃ > 1. This condition implies
that we have an important Inter-Symbol Interference. In the
case of k̃ = 1, the state vector can be zero padded in order
to force k̃ to be greater than 1. However, in this case, the
classical receiver such us the RAKE receiver presents good
performance. In fact, from the study done in [3], we have
shown that the NKF-detector outperforms the classical re-
ceivers such a: MMSE, Decision Feedback Equalizer (DFE)
and Kalman, and performs close the optimal MAP symbol by
symbol detector with less complexity, in the case of severe
multiple access and inter-symbol interferences, i.e. k̃ ≥ 2.
Finally, a receiver structured into a network of normalized
LMS (NLMS) filters is obtained, where, each NLMS filter
is weighted, as in the NKF multiuser detector, by the coeffi-
cient αi(k) which informs us on the severity of the estimation
on each branch. The complexity of the obtained network of
NLMS filters is about O(2K(2K2k̃ +Kk̃)+K3) which is less
than the Maximum A Posteriori detector (O(22k̃K)) and the
NKF detector (O(2K(K2k̃2 +3K2k̃ +Kk̃)+K3)), for k̃ ≥ 2.

6. SIMULATION RESULTS

In this section, we give some simulation results of the re-
sulted network of NLMS filters. We assume a symbol asyn-
chronous multiuser CDMA channel. The multipath channel
is given by: H(z) = 0.802 + 0.535× z−1 + 0.267× z−2. We
set K = 3, and the time delays for the users are arbitrarily set
to zero, two and four chips, respectively. We assume that ev-
ery user has equal power in each receiving path. We employ
the Gold sequences as spreading codes with L = 7. We note
that this situation is a severe case since we have, during the
transmission, two interfered symbols.
Figure 1 gives the bit error rate of user 2 versus signal to
noise ratio for the derived network of NLMS with a fixed
step size and a the proposed variable step size and the Net-
work of Kalman Filters detector. For comparison purposes,
bit error rate (BER) of the Rake detector (see [9]), the Mini-
mum Mean Square Error detector computed on a one symbol

2R[i, j] denotes the element of matrix R in the i-th row and j-th column

period (see reference [10]), the optimal Maximum A Poste-
riori (MAP) symbol by symbol detector (derived in [3]) and
the single user bound on a AWGN is also plotted.
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Figure 1: BER performance of the derived network of NLMS
detector.

We observe that the network of NLMS filters with a vari-
able step size circumvents the problem of the heuristic choice
of the value of the step size. The fixed step size of 0.3 im-
proves the performance compared to the step size of 0.01 for
the high SNR. Therefore, the step size parameter measures
the severity of the prediction error. It plays the role of the
Kalman gain. The performance of the NKF and the network
of LMS filters are better than the Rake and the MMSE detec-
tors.

7. CONCLUSION

In this paper, a network of Normalized LMS Filters
(NLMSF) is derived. The resulted structure does not require
any covariance matrix updates. In the second part, a new
variable step-size, η(k), is described. It includes an informa-
tion about the a priori state estimation error. Monte-Carlo
simulations have shown that the performance of the NLMS
structure are close to those of the NKF with less complexity
and, still, are better than those of MMSE and Rake receivers,
in a heavy system load and an important inter-symbol inter-
ference (ISI) term.
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