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ABSTRACT
A problem of supervised learning from the multivariate time
series (MTS) data where the target variable is potentially
a highly complex function of MTS features is considered.
This paper focuses on finding a compressed representation of
MTS while preserving its predictive potential. Each time se-
quence is decomposed into Chebyshev polynomials, and the
decomposition coefficients are used as predictors in a statisti-
cal learning model. The feature selection method capable of
handling true multivariate effects is then applied to identify
relevant Chebyshev features. MTS compression is achieved
by keeping only those predictors that are pertinent to the re-
sponse.

1. INTRODUCTION

The paper considers a problem of multivariate time series
compression. We start with a dataset where each sample con-
sists of several time series and a single response value. Indi-
vidual series from the same sample correspond to the differ-
ent variables with different physical characteristics generated
by a process. Our goal is to reduce the representation size of
time series, and at the same time to preserve the important
information about the underlying process.

This work is motivated by the manufacturing applications
where a set of sensors log down various physical properties
of a wafer processing over time. The number of time series
varies from several dozens up to hundreds (an example is
a set of Fourier coefficients of 2MHz signal averaged over a
window of 1 second). After a manufacturing step a wafer un-
dergoes a so-called metrology, where the process quality is
verified by taking additional measurements from the wafer.
One of our key objectives is predicting the performance of
the tool given sensors data. We achieve this by building a
supervised statistical model from historical data to predict
the metrology result. The quality of the model is assessed
by predicting response on a set-aside portion of the dataset
not used for learning, and calculating a prediction error by
comparing the model output with the actual metrology re-
sult. The amount of raw data is much larger than what we
can store, but potentially could be very useful in predicting
the process performance. In this context we are interested in
reducing the representation of time series data without sig-
nificantly altering the quality of the prediction, we are not
concerned here with the original signal reconstruction. This
is why the approach taken here is different from the clas-
sical signal compression techniques. In order to stress this
distinction we will refer to this problem as supervised signal
compression.

Our methodology combines methods of signal process-
ing and learning theory. First, we extract a set of features
from each of the time series that is sufficient or superflu-

ous for the original series reconstruction. Then we use our
generic multivariate feature selection mechanism that filters
out irrelevant and ranks informative for the response fea-
tures. Given our requirements on the data compression rate
we choose a number of the most important features and re-
build the model. The information loss rate is measured by the
change in the estimate of the prediction error from the model
built using all relevant features. We can balance between the
compression rate and the predictive power of the model by
changing the number of of the most important features used
for the model construction.

The outline of the paper is as follows. Section2 focuses
on the features that we extract from time series, Sections
3 and4 provide the background on the supervised learning
techniques, variable selection and ranking methods that we
used, Sections5 and6 describe the experimental setup, and
the discussion of the results.

2. CHEBYSHEV POLYNOMIALS

A variety of feature representations are used in practical ap-
plications for learning time series models. More common are
Principal Components, Fourier [4], and wavelet coefficients
[8]. In this paper we use Chebyshev polynomials expansion
to represent the time series. The problem of choosing a fea-
ture basis set is out of the scope of this paper, and we will
not go beyond noting that in our experiments Chebyshev fea-
tures tested against other more common indexing techniques
on various datasets demonstrated comparable or better per-
formance.

Chebyshev polynomial (see [12] for a brief overview and
references)y(x) = Tn(x) of degreen by definition is a poly-
nomial solution of the equation

(1−x2)
d2y
dx2 −x

dy
dx

+n2y = 0, (1)

where |x| ≤ 1 and n is a non-negative integer. Forn = 0
T0(x) = 1. Chebyshev polynomials can also be calculated
using one of useful properties:

Tn+1(x) = 2xTn(x)−Tn−1(x), (2)

Tn(x) = cos(n·cos−1(x)). (3)

A set of Chebyshev polynomials{Tn(x)}n=0,1,... is or-

thogonal with respect to the weighting function(1−x2)−1/2:

1∫

−1

Tm(x)Tn(x)dx√
1−x2

=
{

1
2πδnm,n>0,m>0

π,n=0,m=0
, (4)

whereδmn is the Kronecker delta.
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Using the last property we can represent any piecewise
continuous functionf (x) in the interval−1≤ x≤ 1 as a lin-
ear combination of Chebyshev polynomials:

∞

∑
0

CnTn(x) =
{

f (x),where f (x) is continuous
f (x−0)+ f (x+0)

2 in discontinuity points
. (5)

Here

Cn = A
π

1∫
−1

f (x)Tn(x)dx√
1−x2

,

A =
{

1,n = 0
2,n > 0 .

(6)

For a function{ fi}i=1,...,P defined on a discrete domain
we calculate the coefficients of the Chebyshev decomposi-
tion using a straightforward formula:

Cn =
A
π

P

∑
i=1

fiTn(xi)√
1−x2

i

, (7)

wherexi =−1+ 2
P(i− 1

2).
Generally we start with a set{Cn}n=0,...,P−1 of sizeP and

then use a supervised learning technique to remove redun-
dant features.

3. TREE ENSEMBLES

This section gives background on supervised learning tech-
niques that we employ both for the feature selection and for
the prediction. We try to address a problem of feature filter-
ing, or removal of irrelevant inputs in a very general super-
vised setting: the target variable could be numeric or cate-
gorical, the input space could have variables of mixed type
with non-randomly missing values, the underlying relation-
ship of responseY and predictorsX could be very complex
with nontrivial interactions. The data could be massive in
both dimensions (tens of thousands of variables, and mil-
lions of observations). Ensembles of unstable but very fast
and flexible base learners such as trees (with embedded fea-
ture weighting) can address the most of the listed challenges.
They have been proven to be very effective for variable rank-
ing in problems with up to a hundred thousand predictors
[1, 9]. A more comprehensive overview of feature selection
with ensembles is given in [10].

A decision tree partitions the input space into a set of
disjoint regions, and assigns a response value to each corre-
sponding region. It uses a greedy, top-down recursive parti-
tioning strategy. At every step a decision tree uses exhaustive
search by trying all combinations of variables and split points
to achieve the maximum reduction in impurity of the node.
Therefore, the tree constructing process itself can be consid-
ered as a method of variable selection, and the impurity re-
duction due to a split on a specific variable could indicate the
relative importance of that variable to the tree model. Note,
that this relative importance is based on a multivariate model,
and it is different from the relevance measured by standard,
univariate filter methods. For a single decision tree, a mea-
sure of variable importance is proposed in [3]:

VI(xi ,T) = ∑
t∈T

∆I(xi , t) (8)

where∆I(xi , t) = I(t)− pLI(tL)− pRI(tR) is the decrease in
impurity due to an actual (or potential) split on variablexi

at a nodet of the optimally pruned treeT. The sum in
(8) is taken over all internal tree nodes wherexi is a pri-
mary splitter. Node impurityI(t) for regression is defined
as 1

N(t) ∑s∈t(ys− ȳ)2 where the mean̄y and sum are taken

over all observations of the responseys in nodet, andN(t)
is the number of observations in nodet. For classification
I(t) = Gini(t) whereGini(t) is the Gini index of nodet:

Gini(t) = ∑
i 6= j

pt
i p

t
j (9)

andpt
i is the proportion of observations int whose response

label equalsi (y = i) and i and j run through all response
class numbers. The Gini index is zero whent has observa-
tions only from one class, and reaches its maximum when
the classes are perfectly mixed.

One of the most recent advances in tree ensembles - GBT
(gradient tree boosting) [5, 6] has been proven to be among
the most accurate and versatile state-of-the-art learning ma-
chines. GBT is a serial ensemble where every new tree con-
structed relies on previously built trees. At every iteration
l of GBT a new treeTl is fitted to the generalized residuals
with respect to a loss functionΨ

−
[

∂Ψ(yi ,F(xi)
∂F(xi)

]

F=Fl−1

(10)

giving terminal regionsRjl , j = 1,2, ...,Jl . The correspond-
ing constantsγ jl are solutions

γ jl = argmin
γ ∑

xi∈Rjl

Ψ(yi ,Fl−1(xi)+ γ) (11)

and

Fl (x) = Fl−1(x)+ν ·
Jl

∑
j=1

γ jl I(x ∈ Rjl ) (12)

where0< ν < 1 is a regularization parameter (learning rate.)
The solution is given by

F̂(x) = FL(x), (13)

where the size of the ensembleL is chosen to avoid overfit-
ting (usually by monitoring validation errors.)

GBT inherits all nice properties of a single tree, and also
provides (as a byproduct) more reliable estimate of the vari-
able importance. The importance measure (8) is averaged
over the trees in the ensemble

VI(xi) =
1
L

L

∑
l=1

VI(xi ,Tl ) (14)

GBT builds shallow trees using all variables (on a sub-
sample of the training data), and hence, it can handle large
datasets with a moderate number of inputs. Very high di-
mensional data (thousands or even several hundreds of fea-
tures) is extremely challenging for GBT. A modification of
GBT [1] suggests a different ensemble learning strategy so
that processing of very high dimensional datasets is feasible
with almost no loss in prediction accuracy.

Random Forest[2] is a distinguished representative of
tree ensembles that extends the “random subspace” method
[7]. It grows a forest of random trees on bagged samples
showing excellent results comparable with the best known
classifiers. Random Forest (RF) does not overfit, and can be
summarized as follows:
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1. a numbern is specified much smaller than the total num-
ber of variablesN (typically n∼√N)

2. each tree of maximum depth is grown on a bootstrap sam-
ple of the training set

3. at each node,n out of theN variables are selected at ran-
dom

4. the split used is the best split on thesen variables
The computational complexity for each tree in the RF∼√

N S log(S), whereS is the number of the training cases.
Therefore, it can handle very large number of variables with
moderate number of observations.
Note that for every tree grown in RF, about one-third of the
cases are out-of-bag (out of the bootstrap sample). The out-
of-bag (OOB) samples can serve as a test set for the tree
grown on the non-OOB data.

The variable importance for RF can be defined as for
GBT (14) by averaging the importances from individual
trees.

We use GBT ensemble for response prediction since our
response is a numeric variable and GBT is natively better
adjusted for the regression task given the sample size is not
too small. At the same time Random Forest is used in the
process of feature selection for performance reasons. It is
important to note that we could use any of these methods for
both tasks.

4. ENSEMBLE BASED FEATURE RANKING
AGAINST ARTIFICIAL CONTRASTS

Relative feature ranking (14) provided by the ensembles
mentioned above, does not separate relevant features from
irrelevant. Only a list of importance values is produced with-
out a clear indication which variables to include, which to
discard. Also, trees tend to split on variables with more dis-
tinct values. This effect is more pronounced for categorical
predictors with many levels. It often makes a less relevant
(or completely irrelevant) input variable more “attractive” to
split on only because it has high cardinality.

The main idea in [11] relies on the following reasonable
assumption: a stable feature ranking method, such as an en-
semble of trees, that measures relative relevance of an input
to a target variableY would assign a significantly (in statis-
tical sense) higher rank to an important variablexi than to
an artificial variable created from the same distribution asxi ,
independently ofY. Here we give a brief description of the
algorithm described in [11] that we used as a basis for our
experiments.

The method is a combination of three ideas:A) Estimat-
ing importance using RF ensemble of trees of fixed depth (3-
6 levels) with the split weight re-estimation on OOB samples
(gives more accurate and unbiased estimate of variable im-
portance in each tree and filters out noise variables),B) com-
paring variable importance against artificially constructed
noise variables using a formal statistical test, andC) itera-
tively removing the effect of identified important variables
to allow detection of less important ones (trees and parallel
ensemble of trees are not well suited for additive models).

4.0.1 A. Split weight re-estimation.

A modified scheme for calculating split weight and selecting
best split in each node of a tree is proposed. The idea is to use
training samples to find best split point on each variable, then

use samples that were not used for building the tree (out-of-
bag), to select best split variable in a node. Split weight used
for variable importance estimation is also calculated using
out-of-bag samples.

4.0.2 B. Selecting important features.

In order to determine a cut-off point for the importance
scores, there needs to be acontrastvariable that is known
to be truly independent of the target. By comparing vari-
able importance to this contrast (or several), one can then
use a statistical test to determine which variables are truly
important. We propose to obtain these artificial contrast vari-
ables by randomly permuting values of originalN variables
across theM examples. Generating contrasts using unrelated
distributions, such as Gaussian or uniform, is not sufficient,
because the values of original variables may exhibit some
special structure.

Trees in ensemble are then broken intoK short sets of
equal sizeJ = 10−50. Variable importance is then computed
for all variables, including the artificial contrasts for each set.
Using sets is important when the number of variables is large
or tree depth is small, because some (even important) fea-
tures can be absent in a particular tree. To gain statistical
significance, importance score of all variables is compared
to a percentile (we used75th) of importance scores of theN
contrasts. A statistical test (Student’s t-test) is performed to
compare the scores overK series. Variables that are scored
significantly higher than contrasts are selected.

4.0.3 C. Removing effects of identified important variables.

After a subset of relevant variables were discovered by the
step B, we need to remove their effects on the response. To
accomplish this, the response is predicted using only these
important variables, and a residual of the response is com-
puted. Then we return to the step A, until no variables remain
with scores significantly higher than those of the contrasts. It
is important that the step A uses all variables to build the
ensemble, and does not exclude identified important ones.

Clearly we could use the described feature selection
scheme with any classifier/regressor function which provides
variable importance from all variable interactions. To our
knowledge, only ensembles of trees can provide this conve-
niently.

5. DATA GENERATION

Due to confidentiality of the manufacturing process informa-
tion we used a data generator designed specifically to mimic
most of the challenges we face in the real environment. Each
sample in the dataset consisting of several time series and the
response value is generated using the following algorithm.
First, we generate2N time series independently from each
other. We start with a trapezoid given by vertices randomly
positioned in a predefined region (see Figure1 (a)). Then we
add random amounts of curvature given by parametersvl and
vr into the beginning and ending stages of the trapezoid re-
spectively. Harmonic variation of random frequency, phase
and Gaussian-modulated amplitude, given by parameterva,
are added to the middle part of the signal. Values ofvl , vr and
va are sampled from a predefined distribution. The resulting
function is evaluated atP equidistant points and about1%
of Gaussian noise is added. An example of a final signal is
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presented in Figure1 (b). Then we use firstN time series to
generate the responsey by computing a sum of a linear and
quadratic forms from time series parameters{vl ,vr ,va}:

y = AV +VTBV + ε. (15)

HereA is a vector1×N, B is a matrixN×N andε is Gaus-
sian noise. Elements ofA and B are samples from a pre-
defined distribution function and are the same for the whole
dataset. The otherN time series are included to check the
robustness of the learning and compression engines to the
noise. Following an analogy with real data we refer to the
time series with numberi (1≤ i ≤ 2N) as sensori.

0

1000

2000

3000

4000

5000

6000

(a)

(b)

 

Figure 1:An example of generated time series. (a) Trapezoid
with random vertices; (b) Final signal with oscillation and
noise.

In the experiments we purposely used large signal to
noise ratio. It would correspond to the most conservative
scenario in terms of data compression since the prediction
error degradation will be most noticeable with exclusion of
even weak features-predictors.

6. EXPERIMENTAL RESULTS

For the experiments we used a dataset with 20 sensors and
3000 samples created by the data generator described in the
previous section. Each time series contained measurements
at 80 time points. We extracted 80 Chebyshev coefficients
from it (this corresponds to a lossless compression), but due
to the nature of the data we used only first 25 of them. The
resulting dataset had25·20= 500predictors. First, we built
a GBT model on the full dataset to estimate the prediction
error. Then, we ran a feature selection algorithm [11] that fil-
ters out irrelevant features, and ranks predictors according to
their predictive power. Next, we re-built the model using sev-
eral most important predictors. Consistently throughout the
experiments we used 70% of the samples for model construc-
tion, and the rest 30% for the prediction error estimation.

Figure2 shows the dependence of the prediction error on
the number of features selected. The error graph is normal-
ized by the standard deviation of the response (the prediction
error of the trivial model - overall mean). The dotted line in-
dicates the level of prediction error when all 500 features are
used – this is the lowest error we can get given GBT is not
sensitive to the noise variables. One can see that the number

of features could be decreased by an order of magnitude with
therelativeprediction error increase of about 20%.
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Figure 2: Test error vs. the number of the most important
features used for prediction.

Figure3 shows the features that are selected as the most
important. The first number in the feature name indicates the
sensor and the second – the Chebyshev coefficient. Note that
first 20 features come from only 5 sensors out of 20. Figure
4 demonstrates the importance of sensors. The first series
in the chart corresponds to sensor importance defined as the
maximum estimated by the algorithm importance of the fea-
tures derived from that sensor.The second series is the “true”
sensor importance that is calculated from matricesA andB
used to generate the data. The importances for sensors 11
to 20 are zero because these series were not participating in
response generation, and the feature selection algorithm cap-
tured that. Note that 20 features with the highest importance
(see Figure3) came from the 5 sensors with the top “true”
importances (i.e. sensors that have the largest coefficients in
A andB used to generate the response).

Figure 5 shows the original time series overlayed with
two its reconstructions from Chebyshev coefficients selected
as most important for prediction (top two, and top eight co-
efficients). The signal reconstructed from two coefficients is
shifted down – zero coefficient corresponding to the series
mean was not used in the reconstruction.

7. CONCLUSION

We considered a problem of multivariate time series com-
pression in the supervised setting. Given a response variable
we are interested only in informative (in terms of prediction)
features extracted from the multiple time sequences. Non-
informative (or less informative) features are disregarded -
compressed out. The amount of compression is balanced
with potential loss of the prediction accuracy. The proposed
method uses an efficient basis function decomposition for
each time series, followed by an automatic and truly multi-
variate (any level of interactions) feature selection and rank-
ing mechanism that filters out irrelevant features (expansion
coefficients), and ranks important ones with respect to the
response.
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Figure 3: A list of features together with their importance
scores in descending order. The feature SIM〈i〉.CHEB〈 j〉
corresponds to thej-th coefficient of Chebyshev decompo-
sition of i-th time series.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

GBT importance

''True'' importance

 

Figure 4: Importance of sensors calculated by the GBT
model and the data generator.

The experimental setup corresponded to the challenges
high precision semiconductor manufacturing faces routinely.
The proposed approach was illustrated by representing indi-
vidual time sequences using coefficients in Chebyshev poly-
nomials decomposition (could be any common time series
decomposition). We showed that at least an order of magni-
tude data compression rate could be achieved with insignifi-
cant loss of prediction accuracy under a conservative signal-
to-noise assumption.
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